# Directory Structure ``` ├── .cursor │ └── rules │ └── logo-creation.mdc ├── .gitignore ├── .python-version ├── config │ ├── __init__.py │ └── settings.py ├── Dockerfile ├── downloads │ ├── db-icon-1_128x128.png │ ├── db-icon-1_32x32.png │ ├── db-icon-1.png │ ├── fighter_jet.glb │ ├── skKKrkhF_XplQxNPUPrFX_f09176a2fab045d0945f724a3833b470.png │ ├── y8c1zcRFBHv00oJ3mnonf_8293637079c74a8a8570c655a55904c9_128x128.png │ ├── y8c1zcRFBHv00oJ3mnonf_8293637079c74a8a8570c655a55904c9_32x32.png │ ├── y8c1zcRFBHv00oJ3mnonf_8293637079c74a8a8570c655a55904c9.png │ ├── zEChDDxjUQrMQebsjJxEk_3e241e40750a4293bc1230f064b691be_128x128.png │ ├── zEChDDxjUQrMQebsjJxEk_3e241e40750a4293bc1230f064b691be_32x32.png │ └── zEChDDxjUQrMQebsjJxEk_3e241e40750a4293bc1230f064b691be.png ├── LICENSE ├── pyproject.toml ├── README.md ├── requirements.txt ├── routes │ └── scale_image.py ├── run_server.py ├── server.py ├── tools │ ├── __init__.py │ ├── background_removal.py │ ├── image_download.py │ ├── image_gen.py │ └── image_scaling.py └── uv.lock ``` # Files -------------------------------------------------------------------------------- /.python-version: -------------------------------------------------------------------------------- ``` 3.13 ``` -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- ``` # Python-generated files __pycache__/ *.py[oc] build/ dist/ wheels/ *.egg-info # Virtual environments .venv # Environment variables .env ``` -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- ```markdown # MCP Tool Server for Logo Generation This server provides logo generation capabilities using FAL AI, with tools for image generation, background removal, and automatic scaling. ## Demo [](https://www.youtube.com/watch?v=Miemu1xEZng) ## Installation 1. Install `uv` (Universal Virtualenv): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. Create and activate a virtual environment: ```bash uv venv source .venv/bin/activate # On Unix/macOS # or .venv\Scripts\activate # On Windows ``` 3. Install dependencies: ```bash uv pip install -r requirements.txt ``` 4. Set up your environment variables: - Create a `.env` file in the root directory - Add your FAL AI API key: ```bash FAL_KEY=your_fal_ai_key_here ``` ## Running the Server Start the server with: ```bash python run_server.py ``` The server will be available at `http://127.0.0.1:7777` ### Troubleshooting If you encounter a `FileNotFoundError` on Windows when running the server, make sure you're running the command from the root directory of the project. If the issue persists, try updating to the latest version of the repository which includes fixes for Windows compatibility. For Windows users specifically: 1. Make sure you've activated your virtual environment with `.venv\Scripts\activate` 2. Run the server from the root directory of the project with `python run_server.py` 3. If you see any path-related errors, please report them in the issues section of the repository ## Cursor IDE Configuration 1. Open Cursor Settings 2. Navigate to the MCP section 3. Add the following configuration: - URL: `http://127.0.0.1:7777/sse` - Connection Type: `SSE` - Enable the connection ## Notes - Always reference `@logo-creation.mdc` in your Cursor Composer for consistent results - Steps are defined in `@logo-creation.mdc` but tools can be used independently - All generated logos will be saved in the `downloads` directory - Each logo is automatically generated in three sizes: - Original size - 32x32 pixels - 128x128 pixels - All logos maintain transparency in their final PNG format - Prompts created by agent are informed by examples and prompt structure seen in server.py. You can customize the prompt structure by editing the server.py file. - You can use the generate_image tool to generate any image you want, not just logos ## Requirements - Python 3.8+ - FAL AI API key (required for image generation) - Active internet connection ## References - [Cursor MCP Documentation](https://docs.cursor.com/context/model-context-protocol) - [Model Context Protocol Introduction](https://modelcontextprotocol.io/introduction) - [FAL AI Dashboard](https://fal.ai/dashboard) --- If you find this tool helpful, you can [buy me a coffee](https://buymeacoffee.com/sshtunnelvision) ☕️ to support development! ``` -------------------------------------------------------------------------------- /config/__init__.py: -------------------------------------------------------------------------------- ```python ``` -------------------------------------------------------------------------------- /Dockerfile: -------------------------------------------------------------------------------- ```dockerfile FROM python:3.10-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8000 CMD ["uv", "run", "server.py"] ``` -------------------------------------------------------------------------------- /config/settings.py: -------------------------------------------------------------------------------- ```python # config/settings.py import os # Load environment variables (e.g., from a .env file or system env) FAL_API_KEY = os.getenv("FAL_API_KEY") # Replace with your actual key ``` -------------------------------------------------------------------------------- /tools/__init__.py: -------------------------------------------------------------------------------- ```python from .image_gen import generate_image from .background_removal import remove_background from .image_download import download_image_from_url from .image_scaling import scale_image __all__ = [ 'generate_image', 'remove_background', 'download_image_from_url', 'scale_image' ] ``` -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- ```toml [project] name = "mcp-tool-server" version = "0.1.0" description = "Add your description here" readme = "README.md" requires-python = ">=3.13" dependencies = [ "fal-client>=0.5.9", "fastapi>=0.115.11", "mcp[cli]>=1.3.0", "python-dotenv>=1.0.1", "sse-starlette>=2.2.1", "uvicorn>=0.34.0", ] ``` -------------------------------------------------------------------------------- /routes/scale_image.py: -------------------------------------------------------------------------------- ```python from fastapi import APIRouter, HTTPException from pydantic import BaseModel from typing import List, Tuple from ..tools import scale_image router = APIRouter() class ScaleImageRequest(BaseModel): input_path: str sizes: List[Tuple[int, int]] = [(32, 32), (128, 128)] @router.post("/scale-image") async def scale_image_route(request: ScaleImageRequest): """ Scale an image to specified sizes while preserving transparency. """ try: result = await scale_image(request.input_path, request.sizes) return {"message": result} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) ``` -------------------------------------------------------------------------------- /tools/image_gen.py: -------------------------------------------------------------------------------- ```python # tools/image_gen.py from typing import Optional import fal_client import asyncio import os async def generate_image(prompt: str, model: str = "fal-ai/ideogram/v2", aspect_ratio: str = "1:1", expand_prompt: bool = True, style: str = "auto", negative_prompt: str = "") -> str: """ Generate an image using FAL AI based on a text prompt. """ fal_key = os.getenv("FAL_KEY") print(f"FAL_KEY in environment: {fal_key[:4] if fal_key else 'Not set'}...") def on_queue_update(update): if isinstance(update, fal_client.InProgress): for log in update.logs: print(log["message"]) try: loop = asyncio.get_event_loop() result = await loop.run_in_executor( None, lambda: fal_client.subscribe( model, arguments={ "prompt": prompt, "aspect_ratio": aspect_ratio, "expand_prompt": expand_prompt, "style": style, "negative_prompt": negative_prompt }, with_logs=True, on_queue_update=on_queue_update, ) ) print(f"Raw FAL response: {result}") if result and isinstance(result, dict) and "images" in result and len(result["images"]) > 0: return result["images"][0]["url"] return "Image generation completed, but no URL returned." except Exception as e: return f"Error generating image: {str(e)}" ``` -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- ``` # This file was autogenerated by uv via the following command: # uv pip compile -o requirements.txt pyproject.toml annotated-types==0.7.0 # via pydantic anyio==4.8.0 # via # httpx # mcp # sse-starlette # starlette certifi==2025.1.31 # via # httpcore # httpx click==8.1.8 # via # typer # uvicorn fal-client==0.5.9 # via mcp-tool-server (pyproject.toml) fastapi==0.115.11 # via mcp-tool-server (pyproject.toml) h11==0.14.0 # via # httpcore # uvicorn httpcore==1.0.7 # via httpx httpx==0.28.1 # via # fal-client # mcp httpx-sse==0.4.0 # via # fal-client # mcp idna==3.10 # via # anyio # httpx markdown-it-py==3.0.0 # via rich mcp==1.3.0 # via mcp-tool-server (pyproject.toml) mdurl==0.1.2 # via markdown-it-py pydantic==2.10.6 # via # fastapi # mcp # pydantic-settings pydantic-core==2.27.2 # via pydantic pydantic-settings==2.8.1 # via mcp pygments==2.19.1 # via rich python-dotenv==1.0.1 # via # mcp-tool-server (pyproject.toml) # mcp # pydantic-settings rich==13.9.4 # via typer shellingham==1.5.4 # via typer sniffio==1.3.1 # via anyio sse-starlette==2.2.1 # via # mcp-tool-server (pyproject.toml) # mcp starlette==0.46.0 # via # fastapi # mcp # sse-starlette typer==0.15.2 # via mcp typing-extensions==4.12.2 # via # fastapi # pydantic # pydantic-core # typer uvicorn==0.34.0 # via # mcp-tool-server (pyproject.toml) # mcp ``` -------------------------------------------------------------------------------- /tools/image_scaling.py: -------------------------------------------------------------------------------- ```python from PIL import Image import os from typing import List, Tuple async def scale_image(input_path: str, sizes: List[Tuple[int, int]] = [(32, 32), (128, 128)]) -> str: """ Scale an image to multiple specified sizes while preserving transparency. Args: input_path: Path to the input image sizes: List of (width, height) tuples for desired output sizes Returns: str: Message indicating where the scaled images were saved """ try: if not os.path.exists(input_path): return f"Error: Input file {input_path} does not exist" # Open the image while preserving transparency with Image.open(input_path) as img: # Convert to RGBA if not already if img.mode != 'RGBA': img = img.convert('RGBA') # Get the base filename and directory directory = os.path.dirname(input_path) filename = os.path.splitext(os.path.basename(input_path))[0] scaled_files = [] # Create scaled versions for width, height in sizes: # Resize the image using high-quality resampling scaled = img.resize((width, height), Image.Resampling.LANCZOS) # Generate output filename output_filename = f"{filename}_{width}x{height}.png" output_path = os.path.join(directory, output_filename) # Save with transparency scaled.save(output_path, "PNG") scaled_files.append(output_path) return f"Successfully created scaled versions: {', '.join(scaled_files)}" except Exception as e: return f"Error scaling image: {str(e)}" ``` -------------------------------------------------------------------------------- /tools/background_removal.py: -------------------------------------------------------------------------------- ```python import base64 from typing import Optional import fal_client import asyncio import os from .image_download import download_image_from_url def is_base64(s: str) -> bool: """Check if a string is base64 encoded.""" try: # Check if string starts with data URI scheme if s.startswith('data:image'): # Extract the base64 part after the comma base64_str = s.split(',')[1] # Try to decode it base64.b64decode(base64_str) return True except Exception: pass return False async def remove_background( image_url: str, sync_mode: bool = True, crop_to_bbox: bool = False ) -> str: """ Remove background from an image using FAL AI. """ fal_key = os.getenv("FAL_KEY") print(f"FAL_KEY in environment: {fal_key[:4] if fal_key else 'Not set'}...") try: loop = asyncio.get_event_loop() result = await loop.run_in_executor( None, lambda: fal_client.subscribe( "fal-ai/bria/background/remove", arguments={ "image_url": image_url, "sync_mode": sync_mode } ) ) # Handle the response according to the new schema if isinstance(result, dict) and "image" in result: image_data = result["image"] if "url" in image_data: print("Successfully removed background from image") return image_data["url"] # Return the FAL-hosted URL directly else: return "Background removal completed, but no image URL was returned" else: return f"Unexpected response format: {str(result)}" except Exception as e: return f"Error removing background: {str(e)}" ``` -------------------------------------------------------------------------------- /tools/image_download.py: -------------------------------------------------------------------------------- ```python from typing import Optional import aiohttp import asyncio import os from urllib.parse import urlparse import mimetypes async def download_image_from_url(image_url: str, output_dir: str = "downloads") -> str: """ Download an image from a URL and save it locally. """ try: # Create downloads directory if it doesn't exist os.makedirs(output_dir, exist_ok=True) # Extract filename from URL or generate one parsed_url = urlparse(image_url) filename = os.path.basename(parsed_url.path) if not filename: # If no filename in URL, create one based on timestamp content_type = mimetypes.guess_type(image_url)[0] ext = mimetypes.guess_extension(content_type) if content_type else '.jpg' filename = f"image_{int(asyncio.get_event_loop().time())}{ext}" output_path = os.path.join(output_dir, filename) async with aiohttp.ClientSession() as session: async with session.get(image_url) as response: if response.status != 200: return f"Error downloading image: HTTP {response.status}" # Verify it's an image from content-type content_type = response.headers.get('content-type', '') if not content_type.startswith('image/'): return f"Error: URL does not point to an image (content-type: {content_type})" # Download and save the image with open(output_path, 'wb') as f: while True: chunk = await response.content.read(8192) if not chunk: break f.write(chunk) return f"Image successfully downloaded to: {output_path}" except Exception as e: return f"Error downloading image: {str(e)}" ``` -------------------------------------------------------------------------------- /run_server.py: -------------------------------------------------------------------------------- ```python #!/usr/bin/env python """ Server runner script with clean shutdown handling and auto-reload. This script runs the server in a subprocess, handles Ctrl+C properly, and automatically restarts the server when files change. """ import os import signal import subprocess import sys import time import threading from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler # Flag to indicate if we should restart the server restart_server = False # Flag to indicate if we're shutting down shutting_down = False class FileChangeHandler(FileSystemEventHandler): def on_any_event(self, event): global restart_server # Skip temporary files and __pycache__ directories if (event.src_path.endswith('.pyc') or '__pycache__' in event.src_path or '.git' in event.src_path or event.is_directory): return # Only restart for Python files if event.src_path.endswith('.py'): print(f"\n[RELOAD] Detected change in {event.src_path}") restart_server = True def start_file_watcher(directory): """Start watching for file changes in the specified directory.""" event_handler = FileChangeHandler() observer = Observer() observer.schedule(event_handler, directory, recursive=True) observer.start() return observer def run_server(): """Run the server process and handle its lifecycle.""" global restart_server, shutting_down # Get the path to server.py in the same directory as this script current_dir = os.path.dirname(os.path.abspath(__file__)) if __file__ else "." server_path = os.path.join(current_dir, "server.py") # Start the server as a subprocess server_process = subprocess.Popen( [sys.executable, server_path], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, bufsize=1 # Line buffered ) # Print server output in real-time def print_output(): for line in server_process.stdout: if not shutting_down: # Only print if we're not shutting down print(line, end='') # Start a thread to print output output_thread = threading.Thread(target=print_output) output_thread.daemon = True output_thread.start() # Monitor the server process while server_process.poll() is None: if restart_server: print("\n[RELOAD] Restarting server due to file changes...") server_process.terminate() try: server_process.wait(timeout=2) except subprocess.TimeoutExpired: server_process.kill() server_process.wait() restart_server = False return True # Signal to restart time.sleep(0.1) # If we get here, the server exited on its own return_code = server_process.poll() print(f"\nServer exited with code {return_code}") return False # Signal not to restart def main(): global restart_server, shutting_down print("Starting MCP Tool Server with clean shutdown handling and auto-reload...") # Get the current directory (where this script is located) current_dir = os.path.dirname(os.path.abspath(__file__)) if __file__ else "." # Create downloads directory if it doesn't exist downloads_dir = os.path.join(current_dir, "downloads") if not os.path.exists(downloads_dir): os.makedirs(downloads_dir) print(f"Created downloads directory at: {downloads_dir}") # Start file watcher observer = start_file_watcher(current_dir) # Function to handle Ctrl+C def signal_handler(sig, frame): global shutting_down print("\nReceived shutdown signal. Terminating server...") shutting_down = True observer.stop() sys.exit(0) # Register signal handlers signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) # Run the server, restarting as needed try: while True: should_restart = run_server() if not should_restart: break time.sleep(0.5) # Small delay before restart except KeyboardInterrupt: signal_handler(signal.SIGINT, None) finally: observer.stop() observer.join() return 0 if __name__ == "__main__": sys.exit(main()) ``` -------------------------------------------------------------------------------- /server.py: -------------------------------------------------------------------------------- ```python # server.py import asyncio import click from mcp.server.models import InitializationOptions import mcp.types as types from mcp.server import NotificationOptions, Server from tools.image_gen import generate_image from tools.background_removal import remove_background from tools.image_download import download_image_from_url from tools.image_scaling import scale_image from typing import Optional import os import sys from dotenv import load_dotenv from fastapi import FastAPI from mcp.server.sse import SseServerTransport from starlette.routing import Mount, Route import signal import uvicorn # Debug: Print current working directory print(f"Current working directory: {os.getcwd()}") # Load environment variables print("Loading environment variables...") load_dotenv(verbose=True) print(f"Environment after load_dotenv: FAL_KEY={'*' * len(os.getenv('FAL_KEY')) if os.getenv('FAL_KEY') else 'Not found'}") # Initialize the server app = FastAPI(debug=True) server = Server("image-gen-server") sse = SseServerTransport("/messages/") # Force exit on SIGINT (Ctrl+C) def force_exit_handler(sig, frame): print("\nForce exiting server...") os._exit(0) # Force immediate exit # Register signal handlers signal.signal(signal.SIGINT, force_exit_handler) signal.signal(signal.SIGTERM, force_exit_handler) # Add shutdown event handler @app.on_event("shutdown") async def shutdown_event(): print("Shutting down server gracefully...") # Cancel all tasks tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()] for task in tasks: task.cancel() # Wait briefly for tasks to cancel, then force exit if needed try: await asyncio.wait_for(asyncio.gather(*tasks, return_exceptions=True), timeout=1.0) print("All tasks cancelled successfully") except asyncio.TimeoutError: print("Timeout waiting for tasks to cancel, forcing exit") os._exit(0) @server.list_resources() async def handle_list_resources() -> list[types.Resource]: """List available resources.""" return [] @server.read_resource() async def handle_read_resource(uri: str) -> str: """Read a specific resource.""" raise ValueError(f"Unsupported resource: {uri}") @server.list_prompts() async def handle_list_prompts() -> list[types.Prompt]: """List available prompts.""" return [] @server.get_prompt() async def handle_get_prompt(name: str, arguments: dict[str, str] | None) -> types.GetPromptResult: """Get a specific prompt.""" raise ValueError(f"Unknown prompt: {name}") @server.list_tools() async def handle_list_tools() -> list[types.Tool]: """List available tools.""" return [ types.Tool( name="generate_image", description="Generate an image from a text prompt using FAL AI. For best results with logos and icons, use the format: '[subject], 2D flat design, [optional style details], white background'. Example: 'pine tree logo, 2D flat design, minimal geometric style, white background'", inputSchema={ "type": "object", "properties": { "prompt": { "type": "string", "description": "Text prompt to generate the image. Recommended format: '[subject], 2D flat design, [optional style details], white background'", "examples": [ "mountain peak logo, 2D flat design, minimalist geometric shapes, white background", "coffee cup icon, 2D flat design, simple line art style, white background", "fox mascot, 2D flat design, modern geometric shapes, white background" ] }, "model": { "type": "string", "description": "Model to use for generation", "default": "fal-ai/ideogram/v2", "enum": ["fal-ai/ideogram/v2"] }, "aspect_ratio": { "type": "string", "description": "The aspect ratio of the generated image", "default": "1:1", "enum": ["10:16", "16:10", "9:16", "16:9", "4:3", "3:4", "1:1", "1:3", "3:1", "3:2", "2:3"] }, "expand_prompt": { "type": "boolean", "description": "Whether to expand the prompt with MagicPrompt functionality", "default": True }, "style": { "type": "string", "description": "The style of the generated image", "default": "auto", "enum": ["auto", "general", "realistic", "design", "render_3D", "anime"] }, "negative_prompt": { "type": "string", "description": "A negative prompt to avoid in the generated image", "default": "" } }, "required": ["prompt"] } ), types.Tool( name="remove_background", description="Remove background from an image using FAL AI", inputSchema={ "type": "object", "properties": { "image_url": { "type": "string", "description": "Input image url" }, "sync_mode": { "type": "boolean", "description": "If true, wait for the image to be generated and uploaded before returning", "default": True }, "crop_to_bbox": { "type": "boolean", "description": "If true, crop the result to a bounding box around the subject", "default": False } }, "required": ["image_url"] } ), types.Tool( name="download_image", description="Download an image from a URL and save it locally", inputSchema={ "type": "object", "properties": { "image_url": { "type": "string", "description": "URL of the image to download" }, "output_dir": { "type": "string", "description": "Directory to save the downloaded image", "default": "downloads" } }, "required": ["image_url"] } ), types.Tool( name="scale_image", description="Scale an image to multiple sizes while preserving transparency", inputSchema={ "type": "object", "properties": { "input_path": { "type": "string", "description": "Path to the input image to scale" }, "sizes": { "type": "array", "items": { "type": "array", "items": {"type": "integer"}, "minItems": 2, "maxItems": 2 }, "description": "List of [width, height] pairs for desired output sizes", "default": [[32, 32], [128, 128]] } }, "required": ["input_path"] } ) ] class ImageGenToolHandler: def validate_prompt(self, prompt: str) -> bool: """ Validate that the prompt is not empty. """ return bool(prompt and prompt.strip()) async def handle(self, name: str, arguments: dict | None) -> list[types.TextContent | types.ImageContent]: prompt = arguments.get("prompt") if not prompt or not self.validate_prompt(prompt): return [types.TextContent( type="text", text="Error: Prompt cannot be empty" )] print(f"Generating image with prompt: {prompt}") result = await generate_image( prompt=prompt, model=arguments.get("model", "fal-ai/ideogram/v2"), aspect_ratio=arguments.get("aspect_ratio", "1:1"), expand_prompt=arguments.get("expand_prompt", True), style=arguments.get("style", "auto"), negative_prompt=arguments.get("negative_prompt", "") ) print(f"Image generation result: {result}") if result.startswith("http"): return [types.TextContent(type="text", text=f"Generated image URL: {result}")] return [types.TextContent(type="text", text=result)] class BackgroundRemovalToolHandler: async def handle(self, name: str, arguments: dict | None) -> list[types.TextContent | types.ImageContent]: print(f"Removing background from image: {arguments.get('image_url')}") result = await remove_background( arguments.get("image_url"), arguments.get("sync_mode", True), arguments.get("crop_to_bbox", False) ) print(f"Background removal result: {result}") if result.startswith("http"): return [types.TextContent(type="text", text=f"Background removed image URL: {result}")] return [types.TextContent(type="text", text=result)] class ImageDownloadToolHandler: async def handle(self, name: str, arguments: dict | None) -> list[types.TextContent | types.ImageContent]: print(f"Downloading image from: {arguments.get('image_url')}") result = await download_image_from_url( arguments.get("image_url"), arguments.get("output_dir", "downloads") ) print(f"Download result: {result}") return [types.TextContent(type="text", text=result)] class ImageScalingToolHandler: async def handle(self, name: str, arguments: dict | None) -> list[types.TextContent | types.ImageContent]: print(f"Scaling image: {arguments.get('input_path')}") result = await scale_image( arguments.get("input_path"), arguments.get("sizes", [(32, 32), (128, 128)]) ) print(f"Scaling result: {result}") return [types.TextContent(type="text", text=result)] tool_handlers = { "generate_image": ImageGenToolHandler(), "remove_background": BackgroundRemovalToolHandler(), "download_image": ImageDownloadToolHandler(), "scale_image": ImageScalingToolHandler() } @server.call_tool() async def handle_call_tool( name: str, arguments: dict | None ) -> list[types.TextContent | types.ImageContent]: """Handle tool execution requests.""" if name in tool_handlers: return await tool_handlers[name].handle(name, arguments) else: raise ValueError(f"Unknown tool: {name}") async def handle_sse(request): async with sse.connect_sse( request.scope, request.receive, request._send ) as streams: await server.run( streams[0], streams[1], InitializationOptions( server_name="image-gen-server", server_version="0.1.0", capabilities=server.get_capabilities( notification_options=NotificationOptions(), experimental_capabilities={}, ), ), ) @click.command() @click.option("--port", default=7777, help="Port to listen on") def main(port: int) -> int: # Ensure FAL_KEY is set fal_key = os.getenv("FAL_KEY") if not fal_key: print("Warning: FAL_KEY environment variable not found, checking FAL_API_KEY...") fal_key = os.getenv("FAL_API_KEY") if not fal_key: print("Error: Neither FAL_KEY nor FAL_API_KEY environment variables are set") exit(1) os.environ["FAL_KEY"] = fal_key print("Starting image generation server...") # Add routes app.add_route("/sse", handle_sse) app.mount("/messages", sse.handle_post_message) # Cool ASCII art log print(""" =========================================== 🚀 MCP Server is LIVE! 🚀 ------------------------------------------- | Status: Running | | Transport: SSE | | URL: http://127.0.0.1:{} | | Ready for Cursor MCP client | | Auto-reload: Enabled | | Force exit on Ctrl+C: Enabled | ------------------------------------------- Listening for requests... 🎉 =========================================== """.format(port)) # Configure uvicorn with a short timeout for graceful shutdown config = uvicorn.Config( app=app, host="127.0.0.1", port=port, reload=True, reload_dirs=["mcp_tool_server"], workers=1, timeout_graceful_shutdown=1 # Only wait 1 second for graceful shutdown ) # Run with a custom server instance that has a shorter timeout server = uvicorn.Server(config) try: server.run() except KeyboardInterrupt: print("KeyboardInterrupt received, forcing exit...") os._exit(0) return 0 if __name__ == "__main__": main() ```