#
tokens: 23968/50000 1/161 files (page 17/19)
lines: on (toggle) GitHub
raw markdown copy reset
This is page 17 of 19. Use http://codebase.md/aws-samples/sample-cfm-tips-mcp?lines=true&page={x} to view the full context.

# Directory Structure

```
├── .gitignore
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── diagnose_cost_optimization_hub_v2.py
├── LICENSE
├── logging_config.py
├── mcp_runbooks.json
├── mcp_server_with_runbooks.py
├── playbooks
│   ├── __init__.py
│   ├── aws_lambda
│   │   ├── __init__.py
│   │   └── lambda_optimization.py
│   ├── cloudtrail
│   │   ├── __init__.py
│   │   └── cloudtrail_optimization.py
│   ├── cloudtrail_optimization.py
│   ├── cloudwatch
│   │   ├── __init__.py
│   │   ├── aggregation_queries.py
│   │   ├── alarms_and_dashboards_analyzer.py
│   │   ├── analysis_engine.py
│   │   ├── base_analyzer.py
│   │   ├── cloudwatch_optimization_analyzer.py
│   │   ├── cloudwatch_optimization_tool.py
│   │   ├── cloudwatch_optimization.py
│   │   ├── cost_controller.py
│   │   ├── general_spend_analyzer.py
│   │   ├── logs_optimization_analyzer.py
│   │   ├── metrics_optimization_analyzer.py
│   │   ├── optimization_orchestrator.py
│   │   └── result_processor.py
│   ├── comprehensive_optimization.py
│   ├── ebs
│   │   ├── __init__.py
│   │   └── ebs_optimization.py
│   ├── ebs_optimization.py
│   ├── ec2
│   │   ├── __init__.py
│   │   └── ec2_optimization.py
│   ├── ec2_optimization.py
│   ├── lambda_optimization.py
│   ├── rds
│   │   ├── __init__.py
│   │   └── rds_optimization.py
│   ├── rds_optimization.py
│   └── s3
│       ├── __init__.py
│       ├── analyzers
│       │   ├── __init__.py
│       │   ├── api_cost_analyzer.py
│       │   ├── archive_optimization_analyzer.py
│       │   ├── general_spend_analyzer.py
│       │   ├── governance_analyzer.py
│       │   ├── multipart_cleanup_analyzer.py
│       │   └── storage_class_analyzer.py
│       ├── base_analyzer.py
│       ├── s3_aggregation_queries.py
│       ├── s3_analysis_engine.py
│       ├── s3_comprehensive_optimization_tool.py
│       ├── s3_optimization_orchestrator.py
│       └── s3_optimization.py
├── README.md
├── requirements.txt
├── runbook_functions_extended.py
├── runbook_functions.py
├── RUNBOOKS_GUIDE.md
├── services
│   ├── __init__.py
│   ├── cloudwatch_pricing.py
│   ├── cloudwatch_service_vended_log.py
│   ├── cloudwatch_service.py
│   ├── compute_optimizer.py
│   ├── cost_explorer.py
│   ├── optimization_hub.py
│   ├── performance_insights.py
│   ├── pricing.py
│   ├── s3_pricing.py
│   ├── s3_service.py
│   ├── storage_lens_service.py
│   └── trusted_advisor.py
├── setup.py
├── test_runbooks.py
├── tests
│   ├── __init__.py
│   ├── conftest.py
│   ├── integration
│   │   ├── __init__.py
│   │   ├── cloudwatch
│   │   │   └── test_cloudwatch_integration.py
│   │   ├── test_cloudwatch_comprehensive_tool_integration.py
│   │   ├── test_cloudwatch_orchestrator_integration.py
│   │   ├── test_integration_suite.py
│   │   └── test_orchestrator_integration.py
│   ├── legacy
│   │   ├── example_output_with_docs.py
│   │   ├── example_wellarchitected_output.py
│   │   ├── test_aws_session_management.py
│   │   ├── test_cloudwatch_orchestrator_pagination.py
│   │   ├── test_cloudwatch_pagination_integration.py
│   │   ├── test_cloudwatch_performance_optimizations.py
│   │   ├── test_cloudwatch_result_processor.py
│   │   ├── test_cloudwatch_timeout_issue.py
│   │   ├── test_documentation_links.py
│   │   ├── test_metrics_pagination_count.py
│   │   ├── test_orchestrator_integration.py
│   │   ├── test_pricing_cache_fix_moved.py
│   │   ├── test_pricing_cache_fix.py
│   │   ├── test_runbook_integration.py
│   │   ├── test_runbooks.py
│   │   ├── test_setup_verification.py
│   │   └── test_stack_trace_fix.py
│   ├── performance
│   │   ├── __init__.py
│   │   ├── cloudwatch
│   │   │   └── test_cloudwatch_performance.py
│   │   ├── test_cloudwatch_parallel_execution.py
│   │   ├── test_parallel_execution.py
│   │   └── test_performance_suite.py
│   ├── pytest-cloudwatch.ini
│   ├── pytest.ini
│   ├── README.md
│   ├── requirements-test.txt
│   ├── run_cloudwatch_tests.py
│   ├── run_tests.py
│   ├── test_setup_verification.py
│   ├── test_suite_main.py
│   └── unit
│       ├── __init__.py
│       ├── analyzers
│       │   ├── __init__.py
│       │   ├── conftest_cloudwatch.py
│       │   ├── test_alarms_and_dashboards_analyzer.py
│       │   ├── test_base_analyzer.py
│       │   ├── test_cloudwatch_base_analyzer.py
│       │   ├── test_cloudwatch_cost_constraints.py
│       │   ├── test_cloudwatch_general_spend_analyzer.py
│       │   ├── test_general_spend_analyzer.py
│       │   ├── test_logs_optimization_analyzer.py
│       │   └── test_metrics_optimization_analyzer.py
│       ├── cloudwatch
│       │   ├── test_cache_control.py
│       │   ├── test_cloudwatch_api_mocking.py
│       │   ├── test_cloudwatch_metrics_pagination.py
│       │   ├── test_cloudwatch_pagination_architecture.py
│       │   ├── test_cloudwatch_pagination_comprehensive_fixed.py
│       │   ├── test_cloudwatch_pagination_comprehensive.py
│       │   ├── test_cloudwatch_pagination_fixed.py
│       │   ├── test_cloudwatch_pagination_real_format.py
│       │   ├── test_cloudwatch_pagination_simple.py
│       │   ├── test_cloudwatch_query_pagination.py
│       │   ├── test_cloudwatch_unit_suite.py
│       │   ├── test_general_spend_tips_refactor.py
│       │   ├── test_import_error.py
│       │   ├── test_mcp_pagination_bug.py
│       │   └── test_mcp_surface_pagination.py
│       ├── s3
│       │   └── live
│       │       ├── test_bucket_listing.py
│       │       ├── test_s3_governance_bucket_discovery.py
│       │       └── test_top_buckets.py
│       ├── services
│       │   ├── __init__.py
│       │   ├── test_cloudwatch_cost_controller.py
│       │   ├── test_cloudwatch_query_service.py
│       │   ├── test_cloudwatch_service.py
│       │   ├── test_cost_control_routing.py
│       │   └── test_s3_service.py
│       └── test_unit_suite.py
└── utils
    ├── __init__.py
    ├── aws_client_factory.py
    ├── cache_decorator.py
    ├── cleanup_manager.py
    ├── cloudwatch_cache.py
    ├── documentation_links.py
    ├── error_handler.py
    ├── intelligent_cache.py
    ├── logging_config.py
    ├── memory_manager.py
    ├── parallel_executor.py
    ├── performance_monitor.py
    ├── progressive_timeout.py
    ├── service_orchestrator.py
    └── session_manager.py
```

# Files

--------------------------------------------------------------------------------
/playbooks/cloudwatch/cloudwatch_optimization_tool.py:
--------------------------------------------------------------------------------

```python
   1 | """
   2 | Comprehensive CloudWatch Optimization Tool
   3 | 
   4 | Unified tool that executes all 4 CloudWatch optimization functionalities in parallel
   5 | with intelligent analysis orchestration, cost-aware priority-based execution,
   6 | and comprehensive reporting.
   7 | """
   8 | 
   9 | import logging
  10 | import asyncio
  11 | from typing import Dict, List, Any, Optional
  12 | from datetime import datetime
  13 | 
  14 | from playbooks.cloudwatch.optimization_orchestrator import CloudWatchOptimizationOrchestrator
  15 | from playbooks.cloudwatch.cost_controller import CostController, CostPreferences, CostEstimate
  16 | from utils.logging_config import log_cloudwatch_operation
  17 | 
  18 | logger = logging.getLogger(__name__)
  19 | 
  20 | 
  21 | class CloudWatchOptimizationTool:
  22 |     """
  23 |     Comprehensive CloudWatch optimization tool that executes all functionalities.
  24 |     
  25 |     This tool provides:
  26 |     - Unified execution of all 4 CloudWatch optimization functionalities in parallel
  27 |     - Intelligent analysis orchestration with cost-aware priority-based execution
  28 |     - Comprehensive reporting that aggregates results from all analyzers
  29 |     - Executive summary with top recommendations and functionality coverage metrics
  30 |     - Configurable analysis scope (specific functionalities, resource filtering, time ranges, cost preferences)
  31 |     - Cost estimation and user consent workflows for paid features
  32 |     """
  33 |     
  34 |     def __init__(self, region: str = None, session_id: str = None):
  35 |         """Initialize the comprehensive CloudWatch optimization tool."""
  36 |         self.region = region
  37 |         self.session_id = session_id
  38 |         self.logger = logging.getLogger(__name__)
  39 |         
  40 |         # Initialize orchestrator
  41 |         self.orchestrator = CloudWatchOptimizationOrchestrator(
  42 |             region=region,
  43 |             session_id=session_id
  44 |         )
  45 |         
  46 |         # Initialize cost controller
  47 |         self.cost_controller = CostController()
  48 |         
  49 |         # Tool configuration
  50 |         self.tool_version = "1.0.0"
  51 |         self.supported_functionalities = [
  52 |             'general_spend',
  53 |             'metrics_optimization', 
  54 |             'logs_optimization',
  55 |             'alarms_and_dashboards'
  56 |         ]
  57 |         
  58 |         log_cloudwatch_operation(self.logger, "optimization_tool_initialized",
  59 |                                region=region, session_id=session_id,
  60 |                                supported_functionalities=len(self.supported_functionalities))
  61 |     
  62 |     async def execute_comprehensive_optimization_analysis(self, **kwargs) -> Dict[str, Any]:
  63 |         """
  64 |         Execute comprehensive CloudWatch optimization analysis with all 4 functionalities in parallel.
  65 |         
  66 |         This method implements intelligent analysis orchestration with cost-aware priority-based execution,
  67 |         configurable analysis scope, and comprehensive cost estimation and user consent workflows.
  68 |         
  69 |         Args:
  70 |             **kwargs: Analysis parameters including:
  71 |                 - region: AWS region
  72 |                 - lookback_days: Number of days to analyze (default: 30)
  73 |                 - allow_cost_explorer: Enable Cost Explorer analysis (default: False)
  74 |                 - allow_aws_config: Enable AWS Config governance checks (default: False)
  75 |                 - allow_cloudtrail: Enable CloudTrail usage pattern analysis (default: False)
  76 |                 - allow_minimal_cost_metrics: Enable minimal cost metrics (default: False)
  77 |                 - functionalities: List of specific functionalities to run (default: all)
  78 |                 - resource_filters: Dict of resource filters (log_group_names, alarm_names, etc.)
  79 |                 - time_range_filters: Dict of time range filters (start_date, end_date)
  80 |                 - priority_mode: 'cost_impact' | 'execution_time' | 'balanced' (default: 'balanced')
  81 |                 - store_results: Whether to store results in session (default: True)
  82 |                 - generate_executive_summary: Whether to generate executive summary (default: True)
  83 |                 - max_parallel_analyses: Maximum parallel analyses (default: 4)
  84 |                 
  85 |         Returns:
  86 |             Dictionary containing comprehensive optimization analysis results
  87 |         """
  88 |         start_time = datetime.now()
  89 |         
  90 |         log_cloudwatch_operation(self.logger, "comprehensive_optimization_start",
  91 |                                session_id=self.session_id, 
  92 |                                priority_mode=kwargs.get('priority_mode', 'balanced'))
  93 |         
  94 |         try:
  95 |             # Step 1: Validate and prepare cost preferences with detailed validation
  96 |             cost_validation = await self._validate_cost_preferences_with_consent(**kwargs)
  97 |             if cost_validation['status'] != 'success':
  98 |                 return {
  99 |                     'status': 'error',
 100 |                     'error_message': f"Cost preference validation failed: {cost_validation.get('error_message')}",
 101 |                     'timestamp': start_time.isoformat(),
 102 |                     'cost_validation_details': cost_validation
 103 |                 }
 104 |             
 105 |             cost_preferences = cost_validation['validated_preferences']
 106 |             functionality_coverage = cost_validation['functionality_coverage']
 107 |             
 108 |             # Step 2: Get detailed cost estimate with user consent workflow
 109 |             cost_estimate_result = await self._get_detailed_cost_estimate(**kwargs)
 110 |             if cost_estimate_result['status'] != 'success':
 111 |                 return {
 112 |                     'status': 'error',
 113 |                     'error_message': f"Cost estimation failed: {cost_estimate_result.get('error_message')}",
 114 |                     'timestamp': start_time.isoformat(),
 115 |                     'cost_estimate_details': cost_estimate_result
 116 |                 }
 117 |             
 118 |             cost_estimate = cost_estimate_result['cost_estimate']
 119 |             
 120 |             # Step 3: Configure analysis scope with intelligent filtering
 121 |             analysis_scope = self._configure_analysis_scope(**kwargs)
 122 |             
 123 |             # Step 4: Determine functionalities with priority-based ordering
 124 |             execution_plan = self._create_intelligent_execution_plan(
 125 |                 requested_functionalities=kwargs.get('functionalities', self.supported_functionalities),
 126 |                 cost_preferences=cost_preferences,
 127 |                 priority_mode=kwargs.get('priority_mode', 'balanced'),
 128 |                 analysis_scope=analysis_scope
 129 |             )
 130 |             
 131 |             if not execution_plan['valid_functionalities']:
 132 |                 return {
 133 |                     'status': 'error',
 134 |                     'error_message': 'No valid functionalities specified or enabled',
 135 |                     'supported_functionalities': self.supported_functionalities,
 136 |                     'execution_plan': execution_plan,
 137 |                     'timestamp': start_time.isoformat()
 138 |                 }
 139 |             
 140 |             # Step 5: Execute parallel analysis with intelligent orchestration
 141 |             parallel_results = await self._execute_parallel_analyses_with_orchestration(
 142 |                 execution_plan=execution_plan,
 143 |                 analysis_scope=analysis_scope,
 144 |                 cost_preferences=cost_preferences,
 145 |                 **kwargs
 146 |             )
 147 |             
 148 |             # Step 6: Execute cross-analysis insights and correlations
 149 |             cross_analysis_insights = await self._execute_cross_analysis_insights(
 150 |                 parallel_results, analysis_scope, **kwargs
 151 |             )
 152 |             
 153 |             # Step 7: Generate executive summary with actionable insights
 154 |             executive_summary = None
 155 |             if kwargs.get('generate_executive_summary', True):
 156 |                 executive_summary = await self._generate_executive_summary(
 157 |                     parallel_results, cross_analysis_insights, execution_plan, **kwargs
 158 |                 )
 159 |             
 160 |             # Step 8: Compile comprehensive optimization report
 161 |             optimization_report = self._compile_comprehensive_report(
 162 |                 parallel_results=parallel_results,
 163 |                 cross_analysis_insights=cross_analysis_insights,
 164 |                 executive_summary=executive_summary,
 165 |                 execution_plan=execution_plan,
 166 |                 analysis_scope=analysis_scope,
 167 |                 cost_preferences=cost_preferences,
 168 |                 functionality_coverage=functionality_coverage,
 169 |                 cost_estimate=cost_estimate,
 170 |                 start_time=start_time,
 171 |                 **kwargs
 172 |             )
 173 |             
 174 |             log_cloudwatch_operation(self.logger, "comprehensive_optimization_complete",
 175 |                                    session_id=self.session_id,
 176 |                                    status=optimization_report.get('status'),
 177 |                                    total_execution_time=optimization_report.get('total_execution_time'),
 178 |                                    analyses_executed=len(execution_plan['valid_functionalities']))
 179 |             
 180 |             return optimization_report
 181 |             
 182 |         except Exception as e:
 183 |             import traceback
 184 |             full_traceback = traceback.format_exc()
 185 |             error_message = str(e)
 186 |             self.logger.error(f"Comprehensive optimization analysis failed: {error_message}")
 187 |             self.logger.error(f"Full traceback: {full_traceback}")
 188 |             return {
 189 |                 'status': 'error',
 190 |                 'error_message': error_message,
 191 |                 'error_type': e.__class__.__name__,
 192 |                 'full_exception_details': {
 193 |                     'traceback': full_traceback,
 194 |                     'error_location': self._extract_error_location(full_traceback)
 195 |                 },
 196 |                 'timestamp': start_time.isoformat(),
 197 |                 'session_id': self.session_id,
 198 |                 'tool_version': self.tool_version,
 199 |                 'execution_context': {
 200 |                     'kwargs_keys': list(kwargs.keys()),
 201 |                     'supported_functionalities': self.supported_functionalities
 202 |                 }
 203 |             }
 204 |     
 205 |     def _compile_comprehensive_report(self, parallel_results: Dict[str, Any],
 206 |                                     cross_analysis_insights: Dict[str, Any],
 207 |                                     executive_summary: Optional[Dict[str, Any]],
 208 |                                     execution_plan: Dict[str, Any],
 209 |                                     analysis_scope: Dict[str, Any],
 210 |                                     cost_preferences: Dict[str, Any],
 211 |                                     functionality_coverage: Dict[str, Any],
 212 |                                     cost_estimate: Dict[str, Any],
 213 |                                     start_time: datetime,
 214 |                                     **kwargs) -> Dict[str, Any]:
 215 |         """
 216 |         Compile comprehensive optimization report from all analysis results.
 217 |         
 218 |         This method creates a unified report that includes:
 219 |         - Execution summary with intelligent orchestration metrics
 220 |         - Cost-aware analysis results with transparency
 221 |         - Cross-analysis insights and correlations
 222 |         - Executive summary with actionable recommendations
 223 |         - Detailed configuration and scope information
 224 |         """
 225 |         
 226 |         total_execution_time = (datetime.now() - start_time).total_seconds()
 227 |         
 228 |         # Determine overall status based on parallel execution results
 229 |         overall_status = 'success'
 230 |         if parallel_results.get('status') == 'error':
 231 |             overall_status = 'error'
 232 |         elif parallel_results.get('failed_analyses', 0) > 0:
 233 |             if parallel_results.get('successful_analyses', 0) > 0:
 234 |                 overall_status = 'partial'
 235 |             else:
 236 |                 overall_status = 'error'
 237 |         elif cross_analysis_insights.get('status') == 'error':
 238 |             overall_status = 'partial'
 239 |         
 240 |         # Extract key metrics from parallel execution
 241 |         successful_analyses = parallel_results.get('successful_analyses', 0)
 242 |         failed_analyses = parallel_results.get('failed_analyses', 0)
 243 |         total_analyses = successful_analyses + failed_analyses
 244 |         
 245 |         # Compile top recommendations from all sources
 246 |         top_recommendations = self._extract_top_recommendations_enhanced(
 247 |             parallel_results, cross_analysis_insights, executive_summary
 248 |         )
 249 |         
 250 |         # Create comprehensive report with enhanced structure
 251 |         report = {
 252 |             'status': overall_status,
 253 |             'report_type': 'comprehensive_cloudwatch_optimization_v2',
 254 |             'tool_version': self.tool_version,
 255 |             'generated_at': datetime.now().isoformat(),
 256 |             'analysis_started_at': start_time.isoformat(),
 257 |             'total_execution_time': total_execution_time,
 258 |             'session_id': self.session_id,
 259 |             'region': self.region,
 260 |             
 261 |             # Enhanced Analysis Configuration
 262 |             'analysis_configuration': {
 263 |                 'execution_plan': execution_plan,
 264 |                 'analysis_scope': analysis_scope,
 265 |                 'cost_preferences': cost_preferences,
 266 |                 'functionality_coverage': functionality_coverage,
 267 |                 'cost_estimate': cost_estimate,
 268 |                 'intelligent_orchestration': {
 269 |                     'priority_mode': execution_plan.get('priority_mode', 'balanced'),
 270 |                     'execution_batches': len(execution_plan.get('execution_batches', [])),
 271 |                     'max_parallel_analyses': analysis_scope.get('performance_constraints', {}).get('max_parallel_analyses', 4)
 272 |                 }
 273 |             },
 274 |             
 275 |             # Enhanced Execution Summary
 276 |             'execution_summary': {
 277 |                 'parallel_execution_metrics': {
 278 |                     'total_functionalities_requested': len(execution_plan.get('valid_functionalities', [])),
 279 |                     'successful_analyses': successful_analyses,
 280 |                     'failed_analyses': failed_analyses,
 281 |                     'success_rate': (successful_analyses / total_analyses * 100) if total_analyses > 0 else 0,
 282 |                     'total_execution_time': parallel_results.get('total_execution_time', 0),
 283 |                     'average_analysis_time': (parallel_results.get('total_execution_time', 0) / total_analyses) if total_analyses > 0 else 0,
 284 |                     'execution_efficiency': self._calculate_execution_efficiency(parallel_results, execution_plan)
 285 |                 },
 286 |                 'cost_transparency': {
 287 |                     'cost_incurred': self._extract_cost_incurred(parallel_results),
 288 |                     'cost_incurring_operations': self._extract_cost_operations(parallel_results),
 289 |                     'primary_data_sources': self._extract_primary_data_sources(parallel_results),
 290 |                     'fallback_usage': self._extract_fallback_usage(parallel_results)
 291 |                 },
 292 |                 'batch_execution_details': parallel_results.get('batch_summaries', [])
 293 |             },
 294 |             
 295 |             # Enhanced Key Findings and Recommendations
 296 |             'key_findings': self._extract_key_findings_enhanced(parallel_results, cross_analysis_insights, executive_summary),
 297 |             'top_recommendations': top_recommendations,
 298 |             'optimization_priorities': self._determine_optimization_priorities_enhanced(top_recommendations, cross_analysis_insights),
 299 |             
 300 |             # Detailed Results with Enhanced Structure
 301 |             'detailed_results': {
 302 |                 'individual_analyses': parallel_results.get('individual_results', {}),
 303 |                 'cross_analysis_insights': cross_analysis_insights,
 304 |                 'executive_summary': executive_summary,
 305 |                 'parallel_execution_summary': parallel_results
 306 |             },
 307 |             
 308 |             # Enhanced Session and Data Information
 309 |             'session_metadata': {
 310 |                 'session_id': self.session_id,
 311 |                 'stored_tables': self._extract_stored_tables(parallel_results),
 312 |                 'query_capabilities': 'Full SQL querying available on all stored analysis data',
 313 |                 'data_retention': 'Session data available for 24 hours',
 314 |                 'cross_analysis_correlations': cross_analysis_insights.get('correlation_strength', 'unknown')
 315 |             },
 316 |             
 317 |             # Enhanced Next Steps with Implementation Guidance
 318 |             'recommended_next_steps': self._generate_next_steps_enhanced(
 319 |                 top_recommendations, functionality_coverage, cost_estimate, cross_analysis_insights, executive_summary
 320 |             ),
 321 |             
 322 |             # Implementation Support
 323 |             'implementation_support': {
 324 |                 'cost_impact_analysis': self._generate_cost_impact_analysis(top_recommendations),
 325 |                 'risk_assessment': self._generate_risk_assessment(top_recommendations),
 326 |                 'timeline_recommendations': self._generate_timeline_recommendations(top_recommendations),
 327 |                 'monitoring_recommendations': self._generate_monitoring_recommendations(parallel_results)
 328 |             }
 329 |         }
 330 |         
 331 |         return report
 332 |     
 333 |     def _extract_top_recommendations_enhanced(self, parallel_results: Dict[str, Any],
 334 |                                             cross_analysis_insights: Dict[str, Any],
 335 |                                             executive_summary: Optional[Dict[str, Any]]) -> List[Dict[str, Any]]:
 336 |         """Extract and prioritize top recommendations from all analysis sources."""
 337 |         all_recommendations = []
 338 |         
 339 |         # Extract recommendations from individual parallel analyses
 340 |         individual_results = parallel_results.get('individual_results', {})
 341 |         for analysis_type, analysis_data in individual_results.items():
 342 |             if analysis_data.get('status') == 'success':
 343 |                 recommendations = analysis_data.get('recommendations', [])
 344 |                 for rec in recommendations:
 345 |                     rec['source'] = f'individual_analysis_{analysis_type}'
 346 |                     rec['analysis_type'] = analysis_type
 347 |                     all_recommendations.append(rec)
 348 |         
 349 |         # Extract recommendations from cross-analysis insights
 350 |         if cross_analysis_insights.get('status') == 'success':
 351 |             insights = cross_analysis_insights.get('insights', {})
 352 |             
 353 |             # Priority recommendations from cross-analysis
 354 |             priority_recs = insights.get('priority_recommendations', [])
 355 |             for rec in priority_recs:
 356 |                 rec['source'] = 'cross_analysis_priority'
 357 |                 all_recommendations.append(rec)
 358 |             
 359 |             # Synergy-based recommendations
 360 |             synergies = insights.get('optimization_synergies', [])
 361 |             for synergy in synergies:
 362 |                 all_recommendations.append({
 363 |                     'type': 'optimization_synergy',
 364 |                     'priority': 'high',
 365 |                     'title': f"Synergistic Optimization: {synergy.get('type', 'Unknown')}",
 366 |                     'description': synergy.get('description', ''),
 367 |                     'potential_savings': 0,  # Synergies often have compound benefits
 368 |                     'implementation_effort': 'medium',
 369 |                     'source': 'cross_analysis_synergy',
 370 |                     'synergy_details': synergy
 371 |                 })
 372 |         
 373 |         # Extract recommendations from executive summary
 374 |         if executive_summary and executive_summary.get('status') == 'success':
 375 |             exec_summary = executive_summary.get('executive_summary', {})
 376 |             immediate_actions = exec_summary.get('immediate_actions', [])
 377 |             for action in immediate_actions:
 378 |                 all_recommendations.append({
 379 |                     'type': 'immediate_action',
 380 |                     'priority': 'critical',
 381 |                     'title': action.get('action', 'Immediate Action Required'),
 382 |                     'description': f"Source: {action.get('source', 'Unknown')}",
 383 |                     'potential_savings': action.get('impact', 0),
 384 |                     'implementation_effort': action.get('effort', 'medium'),
 385 |                     'source': 'executive_summary_immediate',
 386 |                     'timeline': action.get('timeline', 'Within 1 week')
 387 |                 })
 388 |         
 389 |         # Enhanced sorting with multiple criteria
 390 |         priority_order = {'critical': 4, 'high': 3, 'medium': 2, 'low': 1}
 391 |         effort_order = {'low': 3, 'medium': 2, 'high': 1}
 392 |         
 393 |         sorted_recommendations = sorted(
 394 |             all_recommendations,
 395 |             key=lambda x: (
 396 |                 priority_order.get(x.get('priority', 'low'), 1),
 397 |                 x.get('potential_savings', 0),
 398 |                 effort_order.get(x.get('implementation_effort', 'medium'), 2)
 399 |             ),
 400 |             reverse=True
 401 |         )
 402 |         
 403 |         # Return top 15 recommendations with enhanced metadata
 404 |         top_recommendations = sorted_recommendations[:15]
 405 |         
 406 |         # Add ranking and context to each recommendation
 407 |         for i, rec in enumerate(top_recommendations):
 408 |             rec['recommendation_rank'] = i + 1
 409 |             rec['recommendation_context'] = {
 410 |                 'total_recommendations_analyzed': len(all_recommendations),
 411 |                 'ranking_criteria': ['priority', 'potential_savings', 'implementation_effort'],
 412 |                 'confidence_score': self._calculate_recommendation_confidence(rec)
 413 |             }
 414 |         
 415 |         return top_recommendations
 416 |     
 417 |     def _extract_key_findings(self, comprehensive_result: Dict[str, Any],
 418 |                             cross_analysis_insights: Dict[str, Any]) -> List[str]:
 419 |         """Extract key findings from all analyses."""
 420 |         findings = []
 421 |         
 422 |         # Analysis execution findings
 423 |         analysis_summary = comprehensive_result.get('analysis_summary', {})
 424 |         if analysis_summary:
 425 |             successful = analysis_summary.get('successful_analyses', 0)
 426 |             total = analysis_summary.get('total_analyses', 0)
 427 |             findings.append(f"Successfully completed {successful} of {total} CloudWatch optimization analyses")
 428 |         
 429 |         # Cost findings
 430 |         if comprehensive_result.get('cost_incurred', False):
 431 |             cost_ops = comprehensive_result.get('cost_incurring_operations', [])
 432 |             findings.append(f"Analysis used {len(cost_ops)} cost-incurring operations: {', '.join(cost_ops)}")
 433 |         else:
 434 |             findings.append("Analysis completed using only free AWS operations")
 435 |         
 436 |         # Data source findings
 437 |         primary_source = comprehensive_result.get('primary_data_source', 'unknown')
 438 |         findings.append(f"Primary data source: {primary_source}")
 439 |         
 440 |         # Cross-analysis findings
 441 |         insight_summary = cross_analysis_insights.get('summary', {})
 442 |         key_insights = insight_summary.get('key_findings', [])
 443 |         findings.extend(key_insights)
 444 |         
 445 |         # Cost impact findings
 446 |         cost_impact = insight_summary.get('cost_impact_analysis', {})
 447 |         if cost_impact.get('potential_monthly_savings'):
 448 |             savings = cost_impact['potential_monthly_savings']
 449 |             percentage = cost_impact.get('savings_percentage', 0)
 450 |             findings.append(f"Potential monthly savings identified: ${savings:.2f} ({percentage:.1f}% of current spend)")
 451 |         
 452 |         return findings
 453 |     
 454 |     def _determine_optimization_priorities(self, recommendations: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
 455 |         """Determine optimization priorities based on recommendations."""
 456 |         priorities = []
 457 |         
 458 |         # Group recommendations by priority level
 459 |         critical_recs = [r for r in recommendations if r.get('priority') == 'critical']
 460 |         high_recs = [r for r in recommendations if r.get('priority') == 'high']
 461 |         
 462 |         if critical_recs:
 463 |             priorities.append({
 464 |                 'priority_level': 'critical',
 465 |                 'title': 'Immediate Action Required',
 466 |                 'description': f'{len(critical_recs)} critical optimization opportunities identified',
 467 |                 'recommended_timeline': 'Within 1 week',
 468 |                 'recommendations': critical_recs[:3]  # Top 3 critical
 469 |             })
 470 |         
 471 |         if high_recs:
 472 |             priorities.append({
 473 |                 'priority_level': 'high',
 474 |                 'title': 'High-Impact Optimizations',
 475 |                 'description': f'{len(high_recs)} high-impact optimization opportunities identified',
 476 |                 'recommended_timeline': 'Within 1 month',
 477 |                 'recommendations': high_recs[:5]  # Top 5 high
 478 |             })
 479 |         
 480 |         # Add general implementation strategy
 481 |         priorities.append({
 482 |             'priority_level': 'strategic',
 483 |             'title': 'Implementation Strategy',
 484 |             'description': 'Recommended approach for CloudWatch optimization',
 485 |             'recommended_timeline': 'Ongoing',
 486 |             'strategy': [
 487 |                 '1. Address critical issues immediately (cost impact >$100/month)',
 488 |                 '2. Implement high-impact optimizations (cost impact >$50/month)',
 489 |                 '3. Clean up unused resources (alarms, metrics, log groups)',
 490 |                 '4. Establish governance policies to prevent future waste',
 491 |                 '5. Schedule regular optimization reviews (quarterly)'
 492 |             ]
 493 |         })
 494 |         
 495 |         return priorities
 496 |     
 497 |     def _generate_next_steps(self, recommendations: List[Dict[str, Any]],
 498 |                            functionality_coverage: Dict[str, Any],
 499 |                            cost_estimate: Dict[str, Any]) -> List[str]:
 500 |         """Generate recommended next steps based on analysis results."""
 501 |         next_steps = []
 502 |         
 503 |         # Based on functionality coverage
 504 |         overall_coverage = functionality_coverage.get('overall_coverage', 0)
 505 |         if overall_coverage < 70:
 506 |             next_steps.append(
 507 |                 f"Consider enabling additional cost features for more comprehensive analysis "
 508 |                 f"(current coverage: {overall_coverage:.1f}%)"
 509 |             )
 510 |         
 511 |         # Based on cost estimate
 512 |         if cost_estimate.get('total_estimated_cost', 0) == 0:
 513 |             next_steps.append(
 514 |                 "All analysis completed with free operations - consider enabling Cost Explorer "
 515 |                 "for historical cost data and trends"
 516 |             )
 517 |         
 518 |         # Based on recommendations
 519 |         if recommendations:
 520 |             critical_count = len([r for r in recommendations if r.get('priority') == 'critical'])
 521 |             if critical_count > 0:
 522 |                 next_steps.append(f"Address {critical_count} critical optimization opportunities immediately")
 523 |             
 524 |             high_count = len([r for r in recommendations if r.get('priority') == 'high'])
 525 |             if high_count > 0:
 526 |                 next_steps.append(f"Plan implementation of {high_count} high-impact optimizations")
 527 |         
 528 |         # General next steps
 529 |         next_steps.extend([
 530 |             "Review detailed analysis results for specific resource optimization opportunities",
 531 |             "Use session SQL queries to explore data relationships and patterns",
 532 |             "Implement monitoring for optimization progress tracking",
 533 |             "Schedule follow-up analysis after implementing changes"
 534 |         ])
 535 |         
 536 |         return next_steps
 537 |     
 538 |     async def execute_specific_functionalities(self, functionalities: List[str], **kwargs) -> Dict[str, Any]:
 539 |         """
 540 |         Execute specific CloudWatch optimization functionalities with intelligent orchestration.
 541 |         
 542 |         This method allows users to run a subset of the available functionalities with the same
 543 |         intelligent orchestration, cost-aware execution, and comprehensive reporting as the
 544 |         comprehensive analysis.
 545 |         
 546 |         Args:
 547 |             functionalities: List of specific functionalities to execute
 548 |             **kwargs: Analysis parameters (same as comprehensive analysis)
 549 |             
 550 |         Returns:
 551 |             Dictionary containing results for the specified functionalities
 552 |         """
 553 |         # Validate requested functionalities
 554 |         valid_functionalities = [f for f in functionalities if f in self.supported_functionalities]
 555 |         
 556 |         if not valid_functionalities:
 557 |             return {
 558 |                 'status': 'error',
 559 |                 'error_message': 'No valid functionalities specified',
 560 |                 'requested_functionalities': functionalities,
 561 |                 'supported_functionalities': self.supported_functionalities
 562 |             }
 563 |         
 564 |         # Execute comprehensive analysis with filtered functionalities
 565 |         kwargs['functionalities'] = valid_functionalities
 566 |         
 567 |         log_cloudwatch_operation(self.logger, "specific_functionalities_execution",
 568 |                                requested=functionalities,
 569 |                                valid=valid_functionalities,
 570 |                                session_id=self.session_id)
 571 |         
 572 |         return await self.execute_comprehensive_optimization_analysis(**kwargs)
 573 |     
 574 |     def get_tool_info(self) -> Dict[str, Any]:
 575 |         """Get information about the optimization tool."""
 576 |         return {
 577 |             'tool_name': 'CloudWatch Optimization Tool',
 578 |             'version': self.tool_version,
 579 |             'supported_functionalities': self.supported_functionalities,
 580 |             'session_id': self.session_id,
 581 |             'region': self.region,
 582 |             'capabilities': [
 583 |                 'Comprehensive CloudWatch cost analysis with all 4 functionalities',
 584 |                 'Intelligent parallel execution with cost-aware priority-based orchestration',
 585 |                 'Configurable analysis scope (specific functionalities, resource filtering, time ranges)',
 586 |                 'Cost-aware analysis with user consent workflows and detailed cost estimation',
 587 |                 'Cross-analysis insights and correlations for optimization synergies',
 588 |                 'Executive summary generation with actionable recommendations',
 589 |                 'SQL-queryable session data storage with comprehensive metadata',
 590 |                 'Enhanced reporting with implementation guidance and risk assessment'
 591 |             ],
 592 |             'cost_control_features': [
 593 |                 'Free operations prioritized (60% functionality coverage)',
 594 |                 'Granular user-controlled paid operations with explicit consent',
 595 |                 'Detailed cost estimation before analysis execution',
 596 |                 'Transparent cost tracking with operation-level visibility',
 597 |                 'Functionality coverage reporting with cost justification',
 598 |                 'Graceful degradation to free operations when paid features disabled'
 599 |             ],
 600 |             'intelligent_orchestration_features': [
 601 |                 'Priority-based execution ordering (cost_impact, execution_time, balanced)',
 602 |                 'Parallel batch execution with configurable concurrency',
 603 |                 'Intelligent resource filtering and scope configuration',
 604 |                 'Cross-analysis correlation and synergy identification',
 605 |                 'Executive summary with implementation roadmap',
 606 |                 'Enhanced error handling with partial result recovery'
 607 |             ]
 608 |         }
 609 |     
 610 |     async def _validate_cost_preferences_with_consent(self, **kwargs) -> Dict[str, Any]:
 611 |         """
 612 |         Validate cost preferences with detailed consent workflow.
 613 |         
 614 |         Args:
 615 |             **kwargs: Analysis parameters including cost preferences
 616 |             
 617 |         Returns:
 618 |             Dictionary containing validation results and consent details
 619 |         """
 620 |         try:
 621 |             # Validate basic cost preferences
 622 |             cost_validation = self.orchestrator.validate_cost_preferences(**kwargs)
 623 |             
 624 |             if cost_validation.get('validation_status') != 'success':
 625 |                 # Convert validation_status to status for consistency
 626 |                 cost_validation['status'] = cost_validation.get('validation_status', 'error')
 627 |                 return cost_validation
 628 |             
 629 |             # Add consent workflow details
 630 |             cost_validation['consent_workflow'] = {
 631 |                 'consent_required': any([
 632 |                     kwargs.get('allow_cost_explorer', False),
 633 |                     kwargs.get('allow_aws_config', False),
 634 |                     kwargs.get('allow_cloudtrail', False),
 635 |                     kwargs.get('allow_minimal_cost_metrics', False)
 636 |                 ]),
 637 |                 'consent_timestamp': datetime.now().isoformat(),
 638 |                 'consent_details': {
 639 |                     'cost_explorer_consent': kwargs.get('allow_cost_explorer', False),
 640 |                     'aws_config_consent': kwargs.get('allow_aws_config', False),
 641 |                     'cloudtrail_consent': kwargs.get('allow_cloudtrail', False),
 642 |                     'minimal_cost_metrics_consent': kwargs.get('allow_minimal_cost_metrics', False)
 643 |                 }
 644 |             }
 645 |             
 646 |             # Ensure status field is set for consistency
 647 |             cost_validation['status'] = cost_validation.get('validation_status', 'success')
 648 |             
 649 |             return cost_validation
 650 |             
 651 |         except Exception as e:
 652 |             import traceback
 653 |             full_traceback = traceback.format_exc()
 654 |             error_message = str(e)
 655 |             self.logger.error(f"Cost preference validation failed: {error_message}")
 656 |             self.logger.error(f"Full traceback: {full_traceback}")
 657 |             return {
 658 |                 'status': 'error',
 659 |                 'error_message': f"Cost preference validation failed: {error_message}",
 660 |                 'error_type': e.__class__.__name__,
 661 |                 'full_exception_details': {
 662 |                     'traceback': full_traceback,
 663 |                     'error_location': self._extract_error_location(full_traceback)
 664 |                 },
 665 |                 'validation_context': kwargs
 666 |             }
 667 |     
 668 |     async def _get_detailed_cost_estimate(self, **kwargs) -> Dict[str, Any]:
 669 |         """
 670 |         Get detailed cost estimate with user consent workflow.
 671 |         
 672 |         Args:
 673 |             **kwargs: Analysis parameters
 674 |             
 675 |         Returns:
 676 |             Dictionary containing detailed cost estimation
 677 |         """
 678 |         try:
 679 |             # Get basic cost estimate
 680 |             cost_estimate_result = self.orchestrator.get_cost_estimate(**kwargs)
 681 |             
 682 |             if cost_estimate_result.get('status') == 'error':
 683 |                 return cost_estimate_result
 684 |             
 685 |             # Add detailed cost breakdown and consent workflow
 686 |             cost_estimate_result['detailed_breakdown'] = {
 687 |                 'free_operations_cost': 0.0,
 688 |                 'paid_operations_estimate': cost_estimate_result.get('cost_estimate', {}).get('total_estimated_cost', 0.0),
 689 |                 'cost_by_service': {
 690 |                     'cost_explorer': 0.01 if kwargs.get('allow_cost_explorer', False) else 0.0,
 691 |                     'aws_config': 0.003 if kwargs.get('allow_aws_config', False) else 0.0,
 692 |                     'cloudtrail': 0.10 if kwargs.get('allow_cloudtrail', False) else 0.0,
 693 |                     'minimal_cost_metrics': 0.01 if kwargs.get('allow_minimal_cost_metrics', False) else 0.0
 694 |                 },
 695 |                 'cost_justification': self._generate_cost_justification(**kwargs)
 696 |             }
 697 |             
 698 |             cost_estimate_result['status'] = 'success'
 699 |             return cost_estimate_result
 700 |             
 701 |         except Exception as e:
 702 |             return {
 703 |                 'status': 'error',
 704 |                 'error_message': f"Cost estimation failed: {str(e)}",
 705 |                 'estimation_context': kwargs
 706 |             }
 707 |     
 708 |     def _generate_cost_justification(self, **kwargs) -> List[Dict[str, Any]]:
 709 |         """Generate cost justification for enabled paid features."""
 710 |         justifications = []
 711 |         
 712 |         if kwargs.get('allow_cost_explorer', False):
 713 |             justifications.append({
 714 |                 'service': 'cost_explorer',
 715 |                 'cost': 0.01,
 716 |                 'justification': 'Provides historical cost trends and detailed spend analysis',
 717 |                 'functionality_gain': '30% additional analysis coverage'
 718 |             })
 719 |         
 720 |         if kwargs.get('allow_aws_config', False):
 721 |             justifications.append({
 722 |                 'service': 'aws_config',
 723 |                 'cost': 0.003,
 724 |                 'justification': 'Enables compliance checking and governance analysis',
 725 |                 'functionality_gain': '5% additional analysis coverage'
 726 |             })
 727 |         
 728 |         if kwargs.get('allow_cloudtrail', False):
 729 |             justifications.append({
 730 |                 'service': 'cloudtrail',
 731 |                 'cost': 0.10,
 732 |                 'justification': 'Provides usage pattern analysis and access insights',
 733 |                 'functionality_gain': '1% additional analysis coverage'
 734 |             })
 735 |         
 736 |         if kwargs.get('allow_minimal_cost_metrics', False):
 737 |             justifications.append({
 738 |                 'service': 'minimal_cost_metrics',
 739 |                 'cost': 0.01,
 740 |                 'justification': 'Enables detailed log ingestion pattern analysis',
 741 |                 'functionality_gain': '4% additional analysis coverage'
 742 |             })
 743 |         
 744 |         return justifications
 745 |     
 746 |     def _configure_analysis_scope(self, **kwargs) -> Dict[str, Any]:
 747 |         """
 748 |         Configure intelligent analysis scope with resource filtering and time ranges.
 749 |         
 750 |         Args:
 751 |             **kwargs: Analysis parameters
 752 |             
 753 |         Returns:
 754 |             Dictionary containing configured analysis scope
 755 |         """
 756 |         # Base scope configuration
 757 |         scope = {
 758 |             'temporal_scope': {
 759 |                 'lookback_days': kwargs.get('lookback_days', 30),
 760 |                 'start_date': kwargs.get('start_date'),
 761 |                 'end_date': kwargs.get('end_date'),
 762 |                 'analysis_granularity': kwargs.get('analysis_granularity', 'daily')
 763 |             },
 764 |             'resource_filters': {
 765 |                 'log_group_names': kwargs.get('log_group_names', []),
 766 |                 'log_group_patterns': kwargs.get('log_group_patterns', []),
 767 |                 'alarm_names': kwargs.get('alarm_names', []),
 768 |                 'alarm_patterns': kwargs.get('alarm_patterns', []),
 769 |                 'dashboard_names': kwargs.get('dashboard_names', []),
 770 |                 'metric_namespaces': kwargs.get('metric_namespaces', []),
 771 |                 'exclude_patterns': kwargs.get('exclude_patterns', [])
 772 |             },
 773 |             'analysis_depth': {
 774 |                 'include_detailed_metrics': kwargs.get('include_detailed_metrics', True),
 775 |                 'include_cost_analysis': kwargs.get('include_cost_analysis', True),
 776 |                 'include_governance_checks': kwargs.get('include_governance_checks', True),
 777 |                 'include_optimization_recommendations': kwargs.get('include_optimization_recommendations', True)
 778 |             },
 779 |             'performance_constraints': {
 780 |                 'max_parallel_analyses': kwargs.get('max_parallel_analyses', 4),
 781 |                 'timeout_per_analysis': kwargs.get('timeout_per_analysis', 120),
 782 |                 'memory_limit_mb': kwargs.get('memory_limit_mb', 1024),
 783 |                 'enable_caching': kwargs.get('enable_caching', True)
 784 |             }
 785 |         }
 786 |         
 787 |         # Validate and sanitize scope
 788 |         scope = self._validate_analysis_scope(scope)
 789 |         
 790 |         return scope
 791 |     
 792 |     def _validate_analysis_scope(self, scope: Dict[str, Any]) -> Dict[str, Any]:
 793 |         """Validate and sanitize analysis scope parameters."""
 794 |         # Validate temporal scope
 795 |         lookback_days = scope['temporal_scope']['lookback_days']
 796 |         if lookback_days < 1 or lookback_days > 365:
 797 |             scope['temporal_scope']['lookback_days'] = min(max(lookback_days, 1), 365)
 798 |         
 799 |         # Validate performance constraints
 800 |         max_parallel = scope['performance_constraints']['max_parallel_analyses']
 801 |         if max_parallel < 1 or max_parallel > 8:
 802 |             scope['performance_constraints']['max_parallel_analyses'] = min(max(max_parallel, 1), 8)
 803 |         
 804 |         timeout = scope['performance_constraints']['timeout_per_analysis']
 805 |         if timeout < 30 or timeout > 600:
 806 |             scope['performance_constraints']['timeout_per_analysis'] = min(max(timeout, 30), 600)
 807 |         
 808 |         return scope
 809 |     
 810 |     def _create_intelligent_execution_plan(self, requested_functionalities: List[str], 
 811 |                                          cost_preferences: Dict[str, Any],
 812 |                                          priority_mode: str,
 813 |                                          analysis_scope: Dict[str, Any]) -> Dict[str, Any]:
 814 |         """
 815 |         Create intelligent execution plan with cost-aware priority-based ordering.
 816 |         
 817 |         Args:
 818 |             requested_functionalities: List of requested analysis functionalities
 819 |             cost_preferences: Validated cost preferences
 820 |             priority_mode: Priority mode ('cost_impact', 'execution_time', 'balanced')
 821 |             analysis_scope: Configured analysis scope
 822 |             
 823 |         Returns:
 824 |             Dictionary containing execution plan with prioritized functionalities
 825 |         """
 826 |         # Validate requested functionalities
 827 |         valid_functionalities = [f for f in requested_functionalities if f in self.supported_functionalities]
 828 |         
 829 |         # Define functionality metadata for prioritization
 830 |         functionality_metadata = {
 831 |             'general_spend': {
 832 |                 'cost_impact_score': 10,  # High cost impact
 833 |                 'execution_time_score': 3,  # Medium execution time
 834 |                 'data_requirements': ['cost_explorer', 'cloudwatch_apis'],
 835 |                 'dependencies': []
 836 |             },
 837 |             'logs_optimization': {
 838 |                 'cost_impact_score': 9,  # High cost impact
 839 |                 'execution_time_score': 4,  # Medium-high execution time
 840 |                 'data_requirements': ['cost_explorer', 'cloudwatch_logs_apis', 'minimal_cost_metrics'],
 841 |                 'dependencies': []
 842 |             },
 843 |             'metrics_optimization': {
 844 |                 'cost_impact_score': 8,  # High cost impact
 845 |                 'execution_time_score': 5,  # High execution time
 846 |                 'data_requirements': ['cost_explorer', 'cloudwatch_apis', 'minimal_cost_metrics'],
 847 |                 'dependencies': []
 848 |             },
 849 |             'alarms_and_dashboards': {
 850 |                 'cost_impact_score': 6,  # Medium cost impact
 851 |                 'execution_time_score': 2,  # Low execution time
 852 |                 'data_requirements': ['cloudwatch_apis', 'aws_config', 'cloudtrail'],
 853 |                 'dependencies': []
 854 |             }
 855 |         }
 856 |         
 857 |         # Calculate priority scores based on mode
 858 |         prioritized_functionalities = []
 859 |         for functionality in valid_functionalities:
 860 |             metadata = functionality_metadata.get(functionality, {})
 861 |             
 862 |             if priority_mode == 'cost_impact':
 863 |                 priority_score = metadata.get('cost_impact_score', 5)
 864 |             elif priority_mode == 'execution_time':
 865 |                 priority_score = 10 - metadata.get('execution_time_score', 5)  # Invert for faster first
 866 |             else:  # balanced
 867 |                 cost_score = metadata.get('cost_impact_score', 5)
 868 |                 time_score = 10 - metadata.get('execution_time_score', 5)
 869 |                 priority_score = (cost_score * 0.7) + (time_score * 0.3)
 870 |             
 871 |             # Adjust score based on data availability
 872 |             data_requirements = metadata.get('data_requirements', [])
 873 |             availability_multiplier = self._calculate_data_availability_multiplier(
 874 |                 data_requirements, cost_preferences
 875 |             )
 876 |             
 877 |             final_score = priority_score * availability_multiplier
 878 |             
 879 |             prioritized_functionalities.append({
 880 |                 'functionality': functionality,
 881 |                 'priority_score': final_score,
 882 |                 'metadata': metadata,
 883 |                 'data_availability_multiplier': availability_multiplier
 884 |             })
 885 |         
 886 |         # Sort by priority score (highest first)
 887 |         prioritized_functionalities.sort(key=lambda x: x['priority_score'], reverse=True)
 888 |         
 889 |         execution_plan = {
 890 |             'valid_functionalities': [f['functionality'] for f in prioritized_functionalities],
 891 |             'prioritized_execution_order': prioritized_functionalities,
 892 |             'priority_mode': priority_mode,
 893 |             'total_functionalities': len(valid_functionalities),
 894 |             'execution_batches': self._create_execution_batches(
 895 |                 prioritized_functionalities, analysis_scope['performance_constraints']['max_parallel_analyses']
 896 |             )
 897 |         }
 898 |         
 899 |         return execution_plan
 900 |     
 901 |     def _calculate_data_availability_multiplier(self, data_requirements: List[str], 
 902 |                                               cost_preferences: Dict[str, Any]) -> float:
 903 |         """Calculate data availability multiplier based on enabled cost preferences."""
 904 |         if not data_requirements:
 905 |             return 1.0
 906 |         
 907 |         available_sources = 0
 908 |         total_sources = len(data_requirements)
 909 |         
 910 |         for requirement in data_requirements:
 911 |             if requirement == 'cost_explorer' and cost_preferences.get('allow_cost_explorer', False):
 912 |                 available_sources += 1
 913 |             elif requirement == 'aws_config' and cost_preferences.get('allow_aws_config', False):
 914 |                 available_sources += 1
 915 |             elif requirement == 'cloudtrail' and cost_preferences.get('allow_cloudtrail', False):
 916 |                 available_sources += 1
 917 |             elif requirement == 'minimal_cost_metrics' and cost_preferences.get('allow_minimal_cost_metrics', False):
 918 |                 available_sources += 1
 919 |             elif requirement in ['cloudwatch_apis', 'cloudwatch_logs_apis']:
 920 |                 available_sources += 1  # Always available (free)
 921 |         
 922 |         return available_sources / total_sources if total_sources > 0 else 1.0
 923 |     
 924 |     def _create_execution_batches(self, prioritized_functionalities: List[Dict[str, Any]], 
 925 |                                 max_parallel: int) -> List[List[str]]:
 926 |         """Create execution batches for parallel processing."""
 927 |         batches = []
 928 |         current_batch = []
 929 |         
 930 |         for functionality_info in prioritized_functionalities:
 931 |             functionality = functionality_info['functionality']
 932 |             
 933 |             if len(current_batch) < max_parallel:
 934 |                 current_batch.append(functionality)
 935 |             else:
 936 |                 batches.append(current_batch)
 937 |                 current_batch = [functionality]
 938 |         
 939 |         if current_batch:
 940 |             batches.append(current_batch)
 941 |         
 942 |         return batches
 943 |     
 944 |     async def _execute_parallel_analyses_with_orchestration(self, execution_plan: Dict[str, Any],
 945 |                                                           analysis_scope: Dict[str, Any],
 946 |                                                           cost_preferences: Dict[str, Any],
 947 |                                                           **kwargs) -> Dict[str, Any]:
 948 |         """
 949 |         Execute analyses in parallel with intelligent orchestration.
 950 |         
 951 |         Args:
 952 |             execution_plan: Intelligent execution plan
 953 |             analysis_scope: Configured analysis scope
 954 |             cost_preferences: Validated cost preferences
 955 |             **kwargs: Additional analysis parameters
 956 |             
 957 |         Returns:
 958 |             Dictionary containing parallel execution results
 959 |         """
 960 |         parallel_start_time = datetime.now()
 961 |         
 962 |         log_cloudwatch_operation(self.logger, "parallel_execution_start",
 963 |                                total_functionalities=len(execution_plan['valid_functionalities']),
 964 |                                execution_batches=len(execution_plan['execution_batches']))
 965 |         
 966 |         try:
 967 |             # Execute analyses in batches for optimal parallel processing
 968 |             all_results = {}
 969 |             batch_results = []
 970 |             
 971 |             for batch_index, batch in enumerate(execution_plan['execution_batches']):
 972 |                 batch_start_time = datetime.now()
 973 |                 
 974 |                 log_cloudwatch_operation(self.logger, "executing_batch",
 975 |                                        batch_index=batch_index,
 976 |                                        batch_functionalities=batch)
 977 |                 
 978 |                 # Execute batch in parallel
 979 |                 batch_tasks = []
 980 |                 for functionality in batch:
 981 |                     task_kwargs = {
 982 |                         **kwargs,
 983 |                         'analysis_scope': analysis_scope,
 984 |                         'cost_preferences': cost_preferences,
 985 |                         'execution_context': {
 986 |                             'batch_index': batch_index,
 987 |                             'functionality': functionality,
 988 |                             'priority_score': next(
 989 |                                 f['priority_score'] for f in execution_plan['prioritized_execution_order']
 990 |                                 if f['functionality'] == functionality
 991 |                             )
 992 |                         }
 993 |                     }
 994 |                     
 995 |                     task = asyncio.create_task(
 996 |                         self.orchestrator.execute_analysis(functionality, **task_kwargs)
 997 |                     )
 998 |                     batch_tasks.append((functionality, task))
 999 |                 
1000 |                 # Wait for batch completion with timeout
1001 |                 timeout = analysis_scope['performance_constraints']['timeout_per_analysis']
1002 |                 batch_results_dict = {}
1003 |                 
1004 |                 for functionality, task in batch_tasks:
1005 |                     try:
1006 |                         result = await asyncio.wait_for(task, timeout=timeout)
1007 |                         batch_results_dict[functionality] = result
1008 |                         all_results[functionality] = result
1009 |                     except asyncio.TimeoutError:
1010 |                         error_result = {
1011 |                             'status': 'timeout',
1012 |                             'error_message': f'Analysis timed out after {timeout} seconds',
1013 |                             'functionality': functionality,
1014 |                             'batch_index': batch_index
1015 |                         }
1016 |                         batch_results_dict[functionality] = error_result
1017 |                         all_results[functionality] = error_result
1018 |                     except Exception as e:
1019 |                         error_result = {
1020 |                             'status': 'error',
1021 |                             'error_message': str(e),
1022 |                             'functionality': functionality,
1023 |                             'batch_index': batch_index
1024 |                         }
1025 |                         batch_results_dict[functionality] = error_result
1026 |                         all_results[functionality] = error_result
1027 |                 
1028 |                 batch_execution_time = (datetime.now() - batch_start_time).total_seconds()
1029 |                 
1030 |                 batch_summary = {
1031 |                     'batch_index': batch_index,
1032 |                     'functionalities': batch,
1033 |                     'execution_time': batch_execution_time,
1034 |                     'successful_analyses': len([r for r in batch_results_dict.values() if r.get('status') == 'success']),
1035 |                     'failed_analyses': len([r for r in batch_results_dict.values() if r.get('status') in ['error', 'timeout']]),
1036 |                     'results': batch_results_dict
1037 |                 }
1038 |                 
1039 |                 batch_results.append(batch_summary)
1040 |                 
1041 |                 log_cloudwatch_operation(self.logger, "batch_execution_complete",
1042 |                                        batch_index=batch_index,
1043 |                                        execution_time=batch_execution_time,
1044 |                                        successful=batch_summary['successful_analyses'],
1045 |                                        failed=batch_summary['failed_analyses'])
1046 |             
1047 |             total_parallel_time = (datetime.now() - parallel_start_time).total_seconds()
1048 |             
1049 |             # Compile parallel execution summary
1050 |             parallel_summary = {
1051 |                 'status': 'success',
1052 |                 'total_execution_time': total_parallel_time,
1053 |                 'total_functionalities': len(execution_plan['valid_functionalities']),
1054 |                 'successful_analyses': len([r for r in all_results.values() if r.get('status') == 'success']),
1055 |                 'failed_analyses': len([r for r in all_results.values() if r.get('status') in ['error', 'timeout']]),
1056 |                 'batch_summaries': batch_results,
1057 |                 'individual_results': all_results,
1058 |                 'execution_plan': execution_plan,
1059 |                 'analysis_scope': analysis_scope
1060 |             }
1061 |             
1062 |             log_cloudwatch_operation(self.logger, "parallel_execution_complete",
1063 |                                    total_time=total_parallel_time,
1064 |                                    successful=parallel_summary['successful_analyses'],
1065 |                                    failed=parallel_summary['failed_analyses'])
1066 |             
1067 |             return parallel_summary
1068 |             
1069 |         except Exception as e:
1070 |             self.logger.error(f"Parallel execution failed: {str(e)}")
1071 |             return {
1072 |                 'status': 'error',
1073 |                 'error_message': str(e),
1074 |                 'execution_time': (datetime.now() - parallel_start_time).total_seconds(),
1075 |                 'execution_plan': execution_plan
1076 |             }
1077 |     
1078 |     async def _execute_cross_analysis_insights(self, parallel_results: Dict[str, Any],
1079 |                                              analysis_scope: Dict[str, Any],
1080 |                                              **kwargs) -> Dict[str, Any]:
1081 |         """
1082 |         Execute cross-analysis insights and correlations.
1083 |         
1084 |         Args:
1085 |             parallel_results: Results from parallel analysis execution
1086 |             analysis_scope: Configured analysis scope
1087 |             **kwargs: Additional parameters
1088 |             
1089 |         Returns:
1090 |             Dictionary containing cross-analysis insights
1091 |         """
1092 |         try:
1093 |             # Extract successful results for cross-analysis
1094 |             successful_results = {
1095 |                 k: v for k, v in parallel_results.get('individual_results', {}).items()
1096 |                 if v.get('status') == 'success'
1097 |             }
1098 |             
1099 |             if len(successful_results) < 2:
1100 |                 return {
1101 |                     'status': 'insufficient_data',
1102 |                     'message': 'Cross-analysis requires at least 2 successful analyses',
1103 |                     'available_analyses': list(successful_results.keys())
1104 |                 }
1105 |             
1106 |             # Perform cross-analysis correlations
1107 |             cross_insights = {
1108 |                 'cost_correlations': self._analyze_cost_correlations(successful_results),
1109 |                 'resource_overlaps': self._analyze_resource_overlaps(successful_results),
1110 |                 'optimization_synergies': self._identify_optimization_synergies(successful_results),
1111 |                 'priority_recommendations': self._generate_priority_recommendations(successful_results)
1112 |             }
1113 |             
1114 |             return {
1115 |                 'status': 'success',
1116 |                 'insights': cross_insights,
1117 |                 'analyses_included': list(successful_results.keys()),
1118 |                 'correlation_strength': self._calculate_correlation_strength(cross_insights)
1119 |             }
1120 |             
1121 |         except Exception as e:
1122 |             return {
1123 |                 'status': 'error',
1124 |                 'error_message': f"Cross-analysis failed: {str(e)}",
1125 |                 'available_results': list(parallel_results.get('individual_results', {}).keys())
1126 |             }
1127 |     
1128 |     def _analyze_cost_correlations(self, results: Dict[str, Any]) -> Dict[str, Any]:
1129 |         """Analyze cost correlations across different CloudWatch components."""
1130 |         correlations = {
1131 |             'high_cost_components': [],
1132 |             'cost_drivers': [],
1133 |             'optimization_impact': {}
1134 |         }
1135 |         
1136 |         # Extract cost data from each analysis
1137 |         for analysis_type, result in results.items():
1138 |             if 'cost_analysis' in result.get('data', {}):
1139 |                 cost_data = result['data']['cost_analysis']
1140 |                 if cost_data.get('monthly_cost', 0) > 100:  # High cost threshold
1141 |                     correlations['high_cost_components'].append({
1142 |                         'component': analysis_type,
1143 |                         'monthly_cost': cost_data.get('monthly_cost', 0),
1144 |                         'cost_trend': cost_data.get('cost_trend', 'unknown')
1145 |                     })
1146 |         
1147 |         return correlations
1148 |     
1149 |     def _analyze_resource_overlaps(self, results: Dict[str, Any]) -> Dict[str, Any]:
1150 |         """Analyze resource overlaps and dependencies."""
1151 |         overlaps = {
1152 |             'shared_resources': [],
1153 |             'dependency_chains': [],
1154 |             'optimization_conflicts': []
1155 |         }
1156 |         
1157 |         # Identify shared log groups, metrics, alarms across analyses
1158 |         resource_usage = {}
1159 |         for analysis_type, result in results.items():
1160 |             resources = result.get('data', {}).get('resources_analyzed', [])
1161 |             for resource in resources:
1162 |                 if resource not in resource_usage:
1163 |                     resource_usage[resource] = []
1164 |                 resource_usage[resource].append(analysis_type)
1165 |         
1166 |         # Find resources used by multiple analyses
1167 |         for resource, analyses in resource_usage.items():
1168 |             if len(analyses) > 1:
1169 |                 overlaps['shared_resources'].append({
1170 |                     'resource': resource,
1171 |                     'used_by_analyses': analyses,
1172 |                     'optimization_coordination_needed': True
1173 |                 })
1174 |         
1175 |         return overlaps
1176 |     
1177 |     def _identify_optimization_synergies(self, results: Dict[str, Any]) -> List[Dict[str, Any]]:
1178 |         """Identify optimization synergies across analyses."""
1179 |         synergies = []
1180 |         
1181 |         # Look for complementary optimizations
1182 |         if 'logs_optimization' in results and 'metrics_optimization' in results:
1183 |             synergies.append({
1184 |                 'type': 'logs_metrics_synergy',
1185 |                 'description': 'Optimizing log retention can reduce both log storage costs and related custom metrics',
1186 |                 'combined_impact': 'high',
1187 |                 'implementation_order': ['logs_optimization', 'metrics_optimization']
1188 |             })
1189 |         
1190 |         if 'alarms_and_dashboards' in results and 'metrics_optimization' in results:
1191 |             synergies.append({
1192 |                 'type': 'alarms_metrics_synergy',
1193 |                 'description': 'Removing unused metrics can eliminate related alarms and dashboard widgets',
1194 |                 'combined_impact': 'medium',
1195 |                 'implementation_order': ['metrics_optimization', 'alarms_and_dashboards']
1196 |             })
1197 |         
1198 |         return synergies
1199 |     
1200 |     def _generate_priority_recommendations(self, results: Dict[str, Any]) -> List[Dict[str, Any]]:
1201 |         """Generate priority recommendations based on cross-analysis."""
1202 |         priorities = []
1203 |         
1204 |         # Aggregate all recommendations and prioritize
1205 |         all_recommendations = []
1206 |         for analysis_type, result in results.items():
1207 |             recommendations = result.get('recommendations', [])
1208 |             for rec in recommendations:
1209 |                 rec['source_analysis'] = analysis_type
1210 |                 all_recommendations.append(rec)
1211 |         
1212 |         # Sort by priority and potential savings
1213 |         priority_order = {'critical': 4, 'high': 3, 'medium': 2, 'low': 1}
1214 |         sorted_recs = sorted(
1215 |             all_recommendations,
1216 |             key=lambda x: (
1217 |                 priority_order.get(x.get('priority', 'low'), 1),
1218 |                 x.get('potential_savings', 0)
1219 |             ),
1220 |             reverse=True
1221 |         )
1222 |         
1223 |         # Take top 5 cross-analysis priorities
1224 |         return sorted_recs[:5]
1225 |     
1226 |     def _calculate_correlation_strength(self, insights: Dict[str, Any]) -> str:
1227 |         """Calculate overall correlation strength between analyses."""
1228 |         correlation_factors = 0
1229 |         
1230 |         if insights.get('cost_correlations', {}).get('high_cost_components'):
1231 |             correlation_factors += 1
1232 |         
1233 |         if insights.get('resource_overlaps', {}).get('shared_resources'):
1234 |             correlation_factors += 1
1235 |         
1236 |         if insights.get('optimization_synergies'):
1237 |             correlation_factors += 1
1238 |         
1239 |         if correlation_factors >= 3:
1240 |             return 'strong'
1241 |         elif correlation_factors >= 2:
1242 |             return 'moderate'
1243 |         elif correlation_factors >= 1:
1244 |             return 'weak'
1245 |         else:
1246 |             return 'minimal'
1247 |     
1248 |     async def _generate_executive_summary(self, parallel_results: Dict[str, Any],
1249 |                                         cross_analysis_insights: Dict[str, Any],
1250 |                                         execution_plan: Dict[str, Any],
1251 |                                         **kwargs) -> Dict[str, Any]:
1252 |         """
1253 |         Generate executive summary with actionable insights.
1254 |         
1255 |         Args:
1256 |             parallel_results: Results from parallel analysis execution
1257 |             cross_analysis_insights: Cross-analysis insights
1258 |             execution_plan: Execution plan used
1259 |             **kwargs: Additional parameters
1260 |             
1261 |         Returns:
1262 |             Dictionary containing executive summary
1263 |         """
1264 |         try:
1265 |             successful_results = {
1266 |                 k: v for k, v in parallel_results.get('individual_results', {}).items()
1267 |                 if v.get('status') == 'success'
1268 |             }
1269 |             
1270 |             # Calculate key metrics
1271 |             total_potential_savings = 0
1272 |             critical_issues = 0
1273 |             high_priority_recommendations = 0
1274 |             
1275 |             for result in successful_results.values():
1276 |                 recommendations = result.get('recommendations', [])
1277 |                 for rec in recommendations:
1278 |                     total_potential_savings += rec.get('potential_savings', 0)
1279 |                     if rec.get('priority') == 'critical':
1280 |                         critical_issues += 1
1281 |                     elif rec.get('priority') == 'high':
1282 |                         high_priority_recommendations += 1
1283 |             
1284 |             # Generate executive summary
1285 |             executive_summary = {
1286 |                 'analysis_overview': {
1287 |                     'total_analyses_requested': len(execution_plan['valid_functionalities']),
1288 |                     'successful_analyses': parallel_results.get('successful_analyses', 0),
1289 |                     'failed_analyses': parallel_results.get('failed_analyses', 0),
1290 |                     'total_execution_time': parallel_results.get('total_execution_time', 0),
1291 |                     'analysis_coverage': f"{(parallel_results.get('successful_analyses', 0) / len(execution_plan['valid_functionalities']) * 100):.1f}%"
1292 |                 },
1293 |                 'key_findings': {
1294 |                     'total_potential_monthly_savings': total_potential_savings,
1295 |                     'critical_issues_identified': critical_issues,
1296 |                     'high_priority_recommendations': high_priority_recommendations,
1297 |                     'cross_analysis_correlation': cross_analysis_insights.get('correlation_strength', 'unknown'),
1298 |                     'optimization_synergies_found': len(cross_analysis_insights.get('insights', {}).get('optimization_synergies', []))
1299 |                 },
1300 |                 'immediate_actions': self._generate_immediate_actions(successful_results, cross_analysis_insights),
1301 |                 'strategic_recommendations': self._generate_strategic_recommendations(successful_results, cross_analysis_insights),
1302 |                 'implementation_roadmap': self._generate_implementation_roadmap(successful_results, cross_analysis_insights),
1303 |                 'cost_impact_summary': {
1304 |                     'estimated_monthly_savings': total_potential_savings,
1305 |                     'roi_timeline': '1-3 months',
1306 |                     'implementation_effort': self._assess_implementation_effort(successful_results),
1307 |                     'risk_level': 'low'
1308 |                 }
1309 |             }
1310 |             
1311 |             return {
1312 |                 'status': 'success',
1313 |                 'executive_summary': executive_summary,
1314 |                 'generated_at': datetime.now().isoformat()
1315 |             }
1316 |             
1317 |         except Exception as e:
1318 |             return {
1319 |                 'status': 'error',
1320 |                 'error_message': f"Executive summary generation failed: {str(e)}",
1321 |                 'fallback_summary': {
1322 |                     'message': 'Executive summary generation failed, but detailed analysis results are available',
1323 |                     'successful_analyses': parallel_results.get('successful_analyses', 0),
1324 |                     'total_analyses': len(execution_plan.get('valid_functionalities', []))
1325 |                 }
1326 |             }
1327 |     
1328 |     def _generate_immediate_actions(self, results: Dict[str, Any], 
1329 |                                   cross_insights: Dict[str, Any]) -> List[Dict[str, Any]]:
1330 |         """Generate immediate action items."""
1331 |         actions = []
1332 |         
1333 |         # Extract critical recommendations
1334 |         for analysis_type, result in results.items():
1335 |             recommendations = result.get('recommendations', [])
1336 |             critical_recs = [r for r in recommendations if r.get('priority') == 'critical']
1337 |             
1338 |             for rec in critical_recs[:2]:  # Top 2 critical per analysis
1339 |                 actions.append({
1340 |                     'action': rec.get('title', 'Critical optimization'),
1341 |                     'source': analysis_type,
1342 |                     'timeline': 'Within 1 week',
1343 |                     'impact': rec.get('potential_savings', 0),
1344 |                     'effort': rec.get('implementation_effort', 'medium')
1345 |                 })
1346 |         
1347 |         return actions[:5]  # Top 5 immediate actions
1348 |     
1349 |     def _generate_strategic_recommendations(self, results: Dict[str, Any],
1350 |                                           cross_insights: Dict[str, Any]) -> List[Dict[str, Any]]:
1351 |         """Generate strategic recommendations."""
1352 |         strategic = []
1353 |         
1354 |         # Add synergy-based recommendations
1355 |         synergies = cross_insights.get('insights', {}).get('optimization_synergies', [])
1356 |         for synergy in synergies:
1357 |             strategic.append({
1358 |                 'recommendation': synergy.get('description', 'Synergistic optimization'),
1359 |                 'type': 'synergy',
1360 |                 'impact': synergy.get('combined_impact', 'medium'),
1361 |                 'timeline': '1-3 months'
1362 |             })
1363 |         
1364 |         # Add governance recommendations
1365 |         strategic.append({
1366 |             'recommendation': 'Establish CloudWatch cost governance policies',
1367 |             'type': 'governance',
1368 |             'impact': 'high',
1369 |             'timeline': '2-4 months',
1370 |             'description': 'Implement automated policies to prevent future CloudWatch cost waste'
1371 |         })
1372 |         
1373 |         return strategic
1374 |     
1375 |     def _generate_implementation_roadmap(self, results: Dict[str, Any],
1376 |                                        cross_insights: Dict[str, Any]) -> Dict[str, List[str]]:
1377 |         """Generate implementation roadmap."""
1378 |         return {
1379 |             'phase_1_immediate': [
1380 |                 'Address critical cost optimization opportunities',
1381 |                 'Remove unused alarms and dashboards',
1382 |                 'Optimize log retention policies'
1383 |             ],
1384 |             'phase_2_short_term': [
1385 |                 'Implement metrics optimization recommendations',
1386 |                 'Establish monitoring for optimization progress',
1387 |                 'Create cost governance policies'
1388 |             ],
1389 |             'phase_3_long_term': [
1390 |                 'Implement automated cost optimization workflows',
1391 |                 'Establish regular optimization review cycles',
1392 |                 'Integrate with broader cloud cost management strategy'
1393 |             ]
1394 |         }
1395 |     
1396 |     def _assess_implementation_effort(self, results: Dict[str, Any]) -> str:
1397 |         """Assess overall implementation effort."""
1398 |         total_recommendations = sum(
1399 |             len(result.get('recommendations', [])) for result in results.values()
1400 |         )
1401 |         
1402 |         if total_recommendations > 20:
1403 |             return 'high'
1404 |         elif total_recommendations > 10:
1405 |             return 'medium'
1406 |         else:
1407 |             return 'low'
1408 |     
1409 |     def cleanup(self):
1410 |         """Clean up tool resources."""
1411 |         try:
1412 |             self.orchestrator.cleanup_session()
1413 |             log_cloudwatch_operation(self.logger, "optimization_tool_cleanup_complete",
1414 |                                    session_id=self.session_id)
1415 |         except Exception as e:
1416 |             self.logger.error(f"Error during tool cleanup: {str(e)}")
1417 |     
1418 |     def _calculate_recommendation_confidence(self, recommendation: Dict[str, Any]) -> float:
1419 |         """Calculate confidence score for a recommendation."""
1420 |         confidence = 0.5  # Base confidence
1421 |         
1422 |         # Increase confidence based on source
1423 |         source = recommendation.get('source', '')
1424 |         if 'individual_analysis' in source:
1425 |             confidence += 0.3
1426 |         elif 'cross_analysis' in source:
1427 |             confidence += 0.4
1428 |         elif 'executive_summary' in source:
1429 |             confidence += 0.2
1430 |         
1431 |         # Increase confidence based on priority
1432 |         priority = recommendation.get('priority', 'low')
1433 |         if priority == 'critical':
1434 |             confidence += 0.3
1435 |         elif priority == 'high':
1436 |             confidence += 0.2
1437 |         elif priority == 'medium':
1438 |             confidence += 0.1
1439 |         
1440 |         # Increase confidence if potential savings are specified
1441 |         if recommendation.get('potential_savings', 0) > 0:
1442 |             confidence += 0.1
1443 |         
1444 |         return min(confidence, 1.0)
1445 |     
1446 |     def _calculate_execution_efficiency(self, parallel_results: Dict[str, Any], 
1447 |                                       execution_plan: Dict[str, Any]) -> float:
1448 |         """Calculate execution efficiency based on parallel performance."""
1449 |         total_time = parallel_results.get('total_execution_time', 0)
1450 |         total_analyses = len(execution_plan.get('valid_functionalities', []))
1451 |         
1452 |         if total_time == 0 or total_analyses == 0:
1453 |             return 0.0
1454 |         
1455 |         # Theoretical sequential time (assuming 60s per analysis)
1456 |         theoretical_sequential_time = total_analyses * 60
1457 |         
1458 |         # Efficiency is the ratio of theoretical time to actual time
1459 |         efficiency = min(theoretical_sequential_time / total_time, 1.0)
1460 |         
1461 |         return efficiency
1462 |     
1463 |     def _extract_cost_incurred(self, parallel_results: Dict[str, Any]) -> bool:
1464 |         """Extract whether any cost was incurred during analysis."""
1465 |         individual_results = parallel_results.get('individual_results', {})
1466 |         
1467 |         for result in individual_results.values():
1468 |             if result.get('cost_incurred', False):
1469 |                 return True
1470 |         
1471 |         return False
1472 |     
1473 |     def _extract_cost_operations(self, parallel_results: Dict[str, Any]) -> List[str]:
1474 |         """Extract all cost-incurring operations from parallel results."""
1475 |         all_operations = []
1476 |         individual_results = parallel_results.get('individual_results', {})
1477 |         
1478 |         for result in individual_results.values():
1479 |             operations = result.get('cost_incurring_operations', [])
1480 |             all_operations.extend(operations)
1481 |         
1482 |         return list(set(all_operations))  # Remove duplicates
1483 |     
1484 |     def _extract_primary_data_sources(self, parallel_results: Dict[str, Any]) -> List[str]:
1485 |         """Extract primary data sources used across analyses."""
1486 |         sources = []
1487 |         individual_results = parallel_results.get('individual_results', {})
1488 |         
1489 |         for result in individual_results.values():
1490 |             source = result.get('primary_data_source')
1491 |             if source and source not in sources:
1492 |                 sources.append(source)
1493 |         
1494 |         return sources
1495 |     
1496 |     def _extract_fallback_usage(self, parallel_results: Dict[str, Any]) -> Dict[str, Any]:
1497 |         """Extract fallback usage information."""
1498 |         fallback_info = {
1499 |             'fallback_used': False,
1500 |             'analyses_with_fallback': [],
1501 |             'fallback_reasons': []
1502 |         }
1503 |         
1504 |         individual_results = parallel_results.get('individual_results', {})
1505 |         
1506 |         for analysis_type, result in individual_results.items():
1507 |             if result.get('fallback_used', False):
1508 |                 fallback_info['fallback_used'] = True
1509 |                 fallback_info['analyses_with_fallback'].append(analysis_type)
1510 |                 
1511 |                 fallback_reason = result.get('fallback_reason', 'Unknown')
1512 |                 if fallback_reason not in fallback_info['fallback_reasons']:
1513 |                     fallback_info['fallback_reasons'].append(fallback_reason)
1514 |         
1515 |         return fallback_info
1516 |     
1517 |     def _extract_stored_tables(self, parallel_results: Dict[str, Any]) -> List[str]:
1518 |         """Extract stored table names from parallel results."""
1519 |         tables = []
1520 |         individual_results = parallel_results.get('individual_results', {})
1521 |         
1522 |         for result in individual_results.values():
1523 |             session_tables = result.get('session_tables', [])
1524 |             tables.extend(session_tables)
1525 |         
1526 |         return list(set(tables))  # Remove duplicates
1527 |     
1528 |     def _extract_key_findings_enhanced(self, parallel_results: Dict[str, Any],
1529 |                                      cross_analysis_insights: Dict[str, Any],
1530 |                                      executive_summary: Optional[Dict[str, Any]]) -> List[str]:
1531 |         """Extract enhanced key findings from all analysis sources."""
1532 |         findings = []
1533 |         
1534 |         # Parallel execution findings
1535 |         successful = parallel_results.get('successful_analyses', 0)
1536 |         failed = parallel_results.get('failed_analyses', 0)
1537 |         total = successful + failed
1538 |         
1539 |         if total > 0:
1540 |             findings.append(f"Executed {total} CloudWatch optimization analyses with {successful} successful completions")
1541 |             
1542 |             if failed > 0:
1543 |                 findings.append(f"{failed} analyses encountered issues but partial results may be available")
1544 |         
1545 |         # Cost transparency findings
1546 |         cost_incurred = self._extract_cost_incurred(parallel_results)
1547 |         if cost_incurred:
1548 |             cost_ops = self._extract_cost_operations(parallel_results)
1549 |             findings.append(f"Analysis used {len(cost_ops)} cost-incurring operations: {', '.join(cost_ops)}")
1550 |         else:
1551 |             findings.append("Analysis completed using only free AWS operations with no additional charges")
1552 |         
1553 |         # Execution efficiency findings
1554 |         efficiency = self._calculate_execution_efficiency(parallel_results, parallel_results.get('execution_plan', {}))
1555 |         if efficiency > 0.8:
1556 |             findings.append(f"Parallel execution achieved high efficiency ({efficiency:.1%}) through intelligent orchestration")
1557 |         elif efficiency > 0.5:
1558 |             findings.append(f"Parallel execution achieved moderate efficiency ({efficiency:.1%})")
1559 |         
1560 |         # Cross-analysis findings
1561 |         if cross_analysis_insights.get('status') == 'success':
1562 |             correlation = cross_analysis_insights.get('correlation_strength', 'unknown')
1563 |             findings.append(f"Cross-analysis correlation strength: {correlation}")
1564 |             
1565 |             insights = cross_analysis_insights.get('insights', {})
1566 |             synergies = insights.get('optimization_synergies', [])
1567 |             if synergies:
1568 |                 findings.append(f"Identified {len(synergies)} optimization synergies for coordinated implementation")
1569 |         
1570 |         # Executive summary findings
1571 |         if executive_summary and executive_summary.get('status') == 'success':
1572 |             exec_data = executive_summary.get('executive_summary', {})
1573 |             key_findings = exec_data.get('key_findings', {})
1574 |             
1575 |             total_savings = key_findings.get('total_potential_monthly_savings', 0)
1576 |             if total_savings > 0:
1577 |                 findings.append(f"Identified potential monthly savings of ${total_savings:.2f}")
1578 |             
1579 |             critical_issues = key_findings.get('critical_issues_identified', 0)
1580 |             if critical_issues > 0:
1581 |                 findings.append(f"Found {critical_issues} critical issues requiring immediate attention")
1582 |         
1583 |         return findings
1584 |     
1585 |     def _determine_optimization_priorities_enhanced(self, recommendations: List[Dict[str, Any]],
1586 |                                                   cross_analysis_insights: Dict[str, Any]) -> List[Dict[str, Any]]:
1587 |         """Determine enhanced optimization priorities with cross-analysis context."""
1588 |         priorities = []
1589 |         
1590 |         # Critical priority tier
1591 |         critical_recs = [r for r in recommendations if r.get('priority') == 'critical']
1592 |         if critical_recs:
1593 |             priorities.append({
1594 |                 'priority_level': 'critical',
1595 |                 'title': 'Immediate Action Required',
1596 |                 'description': f'{len(critical_recs)} critical optimization opportunities requiring immediate attention',
1597 |                 'recommended_timeline': 'Within 1 week',
1598 |                 'estimated_impact': sum(r.get('potential_savings', 0) for r in critical_recs[:3]),
1599 |                 'recommendations': critical_recs[:3],
1600 |                 'implementation_notes': [
1601 |                     'Address highest cost impact items first',
1602 |                     'Coordinate with stakeholders before implementation',
1603 |                     'Monitor impact after each change'
1604 |                 ]
1605 |             })
1606 |         
1607 |         # High priority tier with synergies
1608 |         high_recs = [r for r in recommendations if r.get('priority') == 'high']
1609 |         if high_recs:
1610 |             synergy_note = ""
1611 |             if cross_analysis_insights.get('status') == 'success':
1612 |                 synergies = cross_analysis_insights.get('insights', {}).get('optimization_synergies', [])
1613 |                 if synergies:
1614 |                     synergy_note = f" Consider {len(synergies)} identified synergies for coordinated implementation."
1615 |             
1616 |             priorities.append({
1617 |                 'priority_level': 'high',
1618 |                 'title': 'High-Impact Optimizations',
1619 |                 'description': f'{len(high_recs)} high-impact optimization opportunities identified.{synergy_note}',
1620 |                 'recommended_timeline': 'Within 1 month',
1621 |                 'estimated_impact': sum(r.get('potential_savings', 0) for r in high_recs[:5]),
1622 |                 'recommendations': high_recs[:5],
1623 |                 'synergy_opportunities': cross_analysis_insights.get('insights', {}).get('optimization_synergies', []),
1624 |                 'implementation_notes': [
1625 |                     'Group related optimizations for batch implementation',
1626 |                     'Test changes in non-production environments first',
1627 |                     'Document changes for future reference'
1628 |                 ]
1629 |             })
1630 |         
1631 |         # Strategic implementation guidance
1632 |         priorities.append({
1633 |             'priority_level': 'strategic',
1634 |             'title': 'CloudWatch Optimization Strategy',
1635 |             'description': 'Comprehensive approach to CloudWatch cost optimization and governance',
1636 |             'recommended_timeline': 'Ongoing',
1637 |             'strategy_components': [
1638 |                 '1. Immediate: Address critical cost drivers (>$100/month impact)',
1639 |                 '2. Short-term: Implement high-impact optimizations (>$50/month impact)',
1640 |                 '3. Medium-term: Establish governance policies and automation',
1641 |                 '4. Long-term: Integrate with broader cloud cost management strategy',
1642 |                 '5. Continuous: Regular optimization reviews and monitoring'
1643 |             ],
1644 |             'governance_recommendations': [
1645 |                 'Implement CloudWatch cost budgets and alerts',
1646 |                 'Establish log retention policies by environment',
1647 |                 'Create metrics naming conventions and lifecycle policies',
1648 |                 'Implement automated cleanup for unused resources'
1649 |             ]
1650 |         })
1651 |         
1652 |         return priorities
1653 |     
1654 |     def _generate_next_steps_enhanced(self, recommendations: List[Dict[str, Any]],
1655 |                                     functionality_coverage: Dict[str, Any],
1656 |                                     cost_estimate: Dict[str, Any],
1657 |                                     cross_analysis_insights: Dict[str, Any],
1658 |                                     executive_summary: Optional[Dict[str, Any]]) -> List[str]:
1659 |         """Generate enhanced next steps with implementation guidance."""
1660 |         next_steps = []
1661 |         
1662 |         # Based on analysis completeness
1663 |         overall_coverage = functionality_coverage.get('overall_coverage', 0)
1664 |         if overall_coverage < 70:
1665 |             next_steps.append(
1666 |                 f"Consider enabling additional cost features for more comprehensive analysis "
1667 |                 f"(current coverage: {overall_coverage:.1f}%). Cost Explorer provides the highest value addition."
1668 |             )
1669 |         
1670 |         # Based on cost optimization opportunities
1671 |         if recommendations:
1672 |             critical_count = len([r for r in recommendations if r.get('priority') == 'critical'])
1673 |             high_count = len([r for r in recommendations if r.get('priority') == 'high'])
1674 |             
1675 |             if critical_count > 0:
1676 |                 next_steps.append(f"URGENT: Address {critical_count} critical optimization opportunities within 1 week")
1677 |             
1678 |             if high_count > 0:
1679 |                 next_steps.append(f"Plan implementation of {high_count} high-impact optimizations within 1 month")
1680 |         
1681 |         # Based on cross-analysis insights
1682 |         if cross_analysis_insights.get('status') == 'success':
1683 |             insights = cross_analysis_insights.get('insights', {})
1684 |             synergies = insights.get('optimization_synergies', [])
1685 |             
1686 |             if synergies:
1687 |                 next_steps.append(f"Coordinate implementation of {len(synergies)} identified optimization synergies for maximum impact")
1688 |         
1689 |         # Based on executive summary
1690 |         if executive_summary and executive_summary.get('status') == 'success':
1691 |             exec_data = executive_summary.get('executive_summary', {})
1692 |             roadmap = exec_data.get('implementation_roadmap', {})
1693 |             
1694 |             phase_1 = roadmap.get('phase_1_immediate', [])
1695 |             if phase_1:
1696 |                 next_steps.append(f"Execute Phase 1 immediate actions: {', '.join(phase_1[:2])}")
1697 |         
1698 |         # General implementation guidance
1699 |         next_steps.extend([
1700 |             "Review detailed analysis results and prioritize by cost impact and implementation effort",
1701 |             "Use session SQL queries to explore data relationships and identify additional optimization patterns",
1702 |             "Establish monitoring dashboards to track optimization progress and prevent regression",
1703 |             "Schedule quarterly CloudWatch optimization reviews to maintain cost efficiency"
1704 |         ])
1705 |         
1706 |         # Cost-specific guidance
1707 |         total_estimated_cost = cost_estimate.get('total_estimated_cost', 0)
1708 |         if total_estimated_cost == 0:
1709 |             next_steps.append(
1710 |                 "All analysis completed with free operations. Consider enabling Cost Explorer "
1711 |                 "for historical trends and more detailed cost attribution analysis."
1712 |             )
1713 |         
1714 |         return next_steps
1715 |     
1716 |     def _generate_cost_impact_analysis(self, recommendations: List[Dict[str, Any]]) -> Dict[str, Any]:
1717 |         """Generate cost impact analysis for implementation planning."""
1718 |         total_potential_savings = sum(r.get('potential_savings', 0) for r in recommendations)
1719 |         
1720 |         # Categorize by impact level
1721 |         high_impact = [r for r in recommendations if r.get('potential_savings', 0) > 100]
1722 |         medium_impact = [r for r in recommendations if 50 <= r.get('potential_savings', 0) <= 100]
1723 |         low_impact = [r for r in recommendations if 0 < r.get('potential_savings', 0) < 50]
1724 |         
1725 |         return {
1726 |             'total_potential_monthly_savings': total_potential_savings,
1727 |             'annual_savings_projection': total_potential_savings * 12,
1728 |             'impact_distribution': {
1729 |                 'high_impact_items': len(high_impact),
1730 |                 'medium_impact_items': len(medium_impact),
1731 |                 'low_impact_items': len(low_impact)
1732 |             },
1733 |             'roi_analysis': {
1734 |                 'estimated_implementation_time': '2-4 weeks',
1735 |                 'break_even_timeline': '1-2 months',
1736 |                 'confidence_level': 'high' if total_potential_savings > 200 else 'medium'
1737 |             }
1738 |         }
1739 |     
1740 |     def _generate_risk_assessment(self, recommendations: List[Dict[str, Any]]) -> Dict[str, Any]:
1741 |         """Generate risk assessment for optimization implementations."""
1742 |         # Assess implementation risks
1743 |         high_effort_count = len([r for r in recommendations if r.get('implementation_effort') == 'high'])
1744 |         critical_count = len([r for r in recommendations if r.get('priority') == 'critical'])
1745 |         
1746 |         risk_level = 'low'
1747 |         if high_effort_count > 5 or critical_count > 3:
1748 |             risk_level = 'medium'
1749 |         if high_effort_count > 10 or critical_count > 5:
1750 |             risk_level = 'high'
1751 |         
1752 |         return {
1753 |             'overall_risk_level': risk_level,
1754 |             'risk_factors': {
1755 |                 'implementation_complexity': 'medium' if high_effort_count > 3 else 'low',
1756 |                 'business_impact': 'low',  # CloudWatch optimizations are generally low-risk
1757 |                 'rollback_difficulty': 'low'  # Most changes are easily reversible
1758 |             },
1759 |             'mitigation_strategies': [
1760 |                 'Test changes in non-production environments first',
1761 |                 'Implement changes incrementally with monitoring',
1762 |                 'Maintain backup configurations before making changes',
1763 |                 'Coordinate with application teams for log retention changes'
1764 |             ]
1765 |         }
1766 |     
1767 |     def _generate_timeline_recommendations(self, recommendations: List[Dict[str, Any]]) -> Dict[str, List[str]]:
1768 |         """Generate timeline recommendations for implementation."""
1769 |         critical_recs = [r for r in recommendations if r.get('priority') == 'critical']
1770 |         high_recs = [r for r in recommendations if r.get('priority') == 'high']
1771 |         medium_recs = [r for r in recommendations if r.get('priority') == 'medium']
1772 |         
1773 |         return {
1774 |             'week_1': [
1775 |                 f"Address {len(critical_recs)} critical optimization opportunities",
1776 |                 "Remove unused alarms and dashboards (quick wins)",
1777 |                 "Optimize log retention policies for high-volume log groups"
1778 |             ],
1779 |             'month_1': [
1780 |                 f"Implement {min(len(high_recs), 5)} high-impact optimizations",
1781 |                 "Establish CloudWatch cost monitoring and alerting",
1782 |                 "Create governance policies for new CloudWatch resources"
1783 |             ],
1784 |             'quarter_1': [
1785 |                 f"Complete remaining {len(medium_recs)} medium-priority optimizations",
1786 |                 "Implement automated cleanup workflows",
1787 |                 "Conduct optimization impact review and adjust strategies"
1788 |             ],
1789 |             'ongoing': [
1790 |                 "Monthly CloudWatch cost review and optimization",
1791 |                 "Quarterly comprehensive optimization analysis",
1792 |                 "Continuous monitoring of optimization effectiveness"
1793 |             ]
1794 |         }
1795 |     
1796 |     def _generate_monitoring_recommendations(self, parallel_results: Dict[str, Any]) -> List[Dict[str, Any]]:
1797 |         """Generate monitoring recommendations based on analysis results."""
1798 |         recommendations = []
1799 |         
1800 |         # Cost monitoring
1801 |         recommendations.append({
1802 |             'type': 'cost_monitoring',
1803 |             'title': 'CloudWatch Cost Monitoring',
1804 |             'description': 'Implement comprehensive cost monitoring for CloudWatch services',
1805 |             'implementation': [
1806 |                 'Set up CloudWatch cost budgets with alerts',
1807 |                 'Create cost anomaly detection for CloudWatch spending',
1808 |                 'Implement daily cost tracking dashboards'
1809 |             ]
1810 |         })
1811 |         
1812 |         # Resource monitoring
1813 |         recommendations.append({
1814 |             'type': 'resource_monitoring',
1815 |             'title': 'Resource Utilization Monitoring',
1816 |             'description': 'Monitor CloudWatch resource utilization and efficiency',
1817 |             'implementation': [
1818 |                 'Track log ingestion rates and patterns',
1819 |                 'Monitor alarm state changes and effectiveness',
1820 |                 'Track dashboard usage and access patterns'
1821 |             ]
1822 |         })
1823 |         
1824 |         # Optimization tracking
1825 |         recommendations.append({
1826 |             'type': 'optimization_tracking',
1827 |             'title': 'Optimization Impact Tracking',
1828 |             'description': 'Track the impact of implemented optimizations',
1829 |             'implementation': [
1830 |                 'Measure cost reduction from implemented changes',
1831 |                 'Track resource cleanup and governance compliance',
1832 |                 'Monitor for optimization regression'
1833 |             ]
1834 |         })
1835 |         
1836 |         return recommendations
1837 |     
1838 |     def _extract_error_location(self, traceback_str: str) -> str:
1839 |         """
1840 |         Extract error location from traceback string.
1841 |         
1842 |         Args:
1843 |             traceback_str: Full traceback string
1844 |             
1845 |         Returns:
1846 |             String describing the error location
1847 |         """
1848 |         try:
1849 |             lines = traceback_str.strip().split('\n')
1850 |             
1851 |             # Look for the last "File" line which usually contains the actual error location
1852 |             for line in reversed(lines):
1853 |                 if line.strip().startswith('File "') and ', line ' in line:
1854 |                     # Extract file and line number
1855 |                     parts = line.strip().split(', line ')
1856 |                     if len(parts) >= 2:
1857 |                         file_part = parts[0].replace('File "', '').replace('"', '')
1858 |                         line_part = parts[1].split(',')[0]
1859 |                         
1860 |                         # Get just the filename, not the full path
1861 |                         filename = file_part.split('/')[-1] if '/' in file_part else file_part
1862 |                         
1863 |                         return f"{filename}:line {line_part}"
1864 |             
1865 |             # Fallback: look for any line with file information
1866 |             for line in lines:
1867 |                 if 'File "' in line and 'line ' in line:
1868 |                     return line.strip()
1869 |             
1870 |             return "Error location not found in traceback"
1871 |             
1872 |         except Exception as e:
1873 |             return f"Error parsing traceback: {str(e)}"
```
Page 17/19FirstPrevNextLast