#
tokens: 40731/50000 3/353 files (page 21/25)
lines: on (toggle) GitHub
raw markdown copy reset
This is page 21 of 25. Use http://codebase.md/beehiveinnovations/gemini-mcp-server?lines=true&page={x} to view the full context.

# Directory Structure

```
├── .claude
│   ├── commands
│   │   └── fix-github-issue.md
│   └── settings.json
├── .coveragerc
├── .dockerignore
├── .env.example
├── .gitattributes
├── .github
│   ├── FUNDING.yml
│   ├── ISSUE_TEMPLATE
│   │   ├── bug_report.yml
│   │   ├── config.yml
│   │   ├── documentation.yml
│   │   ├── feature_request.yml
│   │   └── tool_addition.yml
│   ├── pull_request_template.md
│   └── workflows
│       ├── docker-pr.yml
│       ├── docker-release.yml
│       ├── semantic-pr.yml
│       ├── semantic-release.yml
│       └── test.yml
├── .gitignore
├── .pre-commit-config.yaml
├── AGENTS.md
├── CHANGELOG.md
├── claude_config_example.json
├── CLAUDE.md
├── clink
│   ├── __init__.py
│   ├── agents
│   │   ├── __init__.py
│   │   ├── base.py
│   │   ├── claude.py
│   │   ├── codex.py
│   │   └── gemini.py
│   ├── constants.py
│   ├── models.py
│   ├── parsers
│   │   ├── __init__.py
│   │   ├── base.py
│   │   ├── claude.py
│   │   ├── codex.py
│   │   └── gemini.py
│   └── registry.py
├── code_quality_checks.ps1
├── code_quality_checks.sh
├── communication_simulator_test.py
├── conf
│   ├── __init__.py
│   ├── azure_models.json
│   ├── cli_clients
│   │   ├── claude.json
│   │   ├── codex.json
│   │   └── gemini.json
│   ├── custom_models.json
│   ├── dial_models.json
│   ├── gemini_models.json
│   ├── openai_models.json
│   ├── openrouter_models.json
│   └── xai_models.json
├── config.py
├── docker
│   ├── README.md
│   └── scripts
│       ├── build.ps1
│       ├── build.sh
│       ├── deploy.ps1
│       ├── deploy.sh
│       └── healthcheck.py
├── docker-compose.yml
├── Dockerfile
├── docs
│   ├── adding_providers.md
│   ├── adding_tools.md
│   ├── advanced-usage.md
│   ├── ai_banter.md
│   ├── ai-collaboration.md
│   ├── azure_openai.md
│   ├── configuration.md
│   ├── context-revival.md
│   ├── contributions.md
│   ├── custom_models.md
│   ├── docker-deployment.md
│   ├── gemini-setup.md
│   ├── getting-started.md
│   ├── index.md
│   ├── locale-configuration.md
│   ├── logging.md
│   ├── model_ranking.md
│   ├── testing.md
│   ├── tools
│   │   ├── analyze.md
│   │   ├── apilookup.md
│   │   ├── challenge.md
│   │   ├── chat.md
│   │   ├── clink.md
│   │   ├── codereview.md
│   │   ├── consensus.md
│   │   ├── debug.md
│   │   ├── docgen.md
│   │   ├── listmodels.md
│   │   ├── planner.md
│   │   ├── precommit.md
│   │   ├── refactor.md
│   │   ├── secaudit.md
│   │   ├── testgen.md
│   │   ├── thinkdeep.md
│   │   ├── tracer.md
│   │   └── version.md
│   ├── troubleshooting.md
│   ├── vcr-testing.md
│   └── wsl-setup.md
├── examples
│   ├── claude_config_macos.json
│   └── claude_config_wsl.json
├── LICENSE
├── providers
│   ├── __init__.py
│   ├── azure_openai.py
│   ├── base.py
│   ├── custom.py
│   ├── dial.py
│   ├── gemini.py
│   ├── openai_compatible.py
│   ├── openai.py
│   ├── openrouter.py
│   ├── registries
│   │   ├── __init__.py
│   │   ├── azure.py
│   │   ├── base.py
│   │   ├── custom.py
│   │   ├── dial.py
│   │   ├── gemini.py
│   │   ├── openai.py
│   │   ├── openrouter.py
│   │   └── xai.py
│   ├── registry_provider_mixin.py
│   ├── registry.py
│   ├── shared
│   │   ├── __init__.py
│   │   ├── model_capabilities.py
│   │   ├── model_response.py
│   │   ├── provider_type.py
│   │   └── temperature.py
│   └── xai.py
├── pyproject.toml
├── pytest.ini
├── README.md
├── requirements-dev.txt
├── requirements.txt
├── run_integration_tests.ps1
├── run_integration_tests.sh
├── run-server.ps1
├── run-server.sh
├── scripts
│   └── sync_version.py
├── server.py
├── simulator_tests
│   ├── __init__.py
│   ├── base_test.py
│   ├── conversation_base_test.py
│   ├── log_utils.py
│   ├── test_analyze_validation.py
│   ├── test_basic_conversation.py
│   ├── test_chat_simple_validation.py
│   ├── test_codereview_validation.py
│   ├── test_consensus_conversation.py
│   ├── test_consensus_three_models.py
│   ├── test_consensus_workflow_accurate.py
│   ├── test_content_validation.py
│   ├── test_conversation_chain_validation.py
│   ├── test_cross_tool_comprehensive.py
│   ├── test_cross_tool_continuation.py
│   ├── test_debug_certain_confidence.py
│   ├── test_debug_validation.py
│   ├── test_line_number_validation.py
│   ├── test_logs_validation.py
│   ├── test_model_thinking_config.py
│   ├── test_o3_model_selection.py
│   ├── test_o3_pro_expensive.py
│   ├── test_ollama_custom_url.py
│   ├── test_openrouter_fallback.py
│   ├── test_openrouter_models.py
│   ├── test_per_tool_deduplication.py
│   ├── test_planner_continuation_history.py
│   ├── test_planner_validation_old.py
│   ├── test_planner_validation.py
│   ├── test_precommitworkflow_validation.py
│   ├── test_prompt_size_limit_bug.py
│   ├── test_refactor_validation.py
│   ├── test_secaudit_validation.py
│   ├── test_testgen_validation.py
│   ├── test_thinkdeep_validation.py
│   ├── test_token_allocation_validation.py
│   ├── test_vision_capability.py
│   └── test_xai_models.py
├── systemprompts
│   ├── __init__.py
│   ├── analyze_prompt.py
│   ├── chat_prompt.py
│   ├── clink
│   │   ├── codex_codereviewer.txt
│   │   ├── default_codereviewer.txt
│   │   ├── default_planner.txt
│   │   └── default.txt
│   ├── codereview_prompt.py
│   ├── consensus_prompt.py
│   ├── debug_prompt.py
│   ├── docgen_prompt.py
│   ├── generate_code_prompt.py
│   ├── planner_prompt.py
│   ├── precommit_prompt.py
│   ├── refactor_prompt.py
│   ├── secaudit_prompt.py
│   ├── testgen_prompt.py
│   ├── thinkdeep_prompt.py
│   └── tracer_prompt.py
├── tests
│   ├── __init__.py
│   ├── CASSETTE_MAINTENANCE.md
│   ├── conftest.py
│   ├── gemini_cassettes
│   │   ├── chat_codegen
│   │   │   └── gemini25_pro_calculator
│   │   │       └── mldev.json
│   │   ├── chat_cross
│   │   │   └── step1_gemini25_flash_number
│   │   │       └── mldev.json
│   │   └── consensus
│   │       └── step2_gemini25_flash_against
│   │           └── mldev.json
│   ├── http_transport_recorder.py
│   ├── mock_helpers.py
│   ├── openai_cassettes
│   │   ├── chat_cross_step2_gpt5_reminder.json
│   │   ├── chat_gpt5_continuation.json
│   │   ├── chat_gpt5_moon_distance.json
│   │   ├── consensus_step1_gpt5_for.json
│   │   └── o3_pro_basic_math.json
│   ├── pii_sanitizer.py
│   ├── sanitize_cassettes.py
│   ├── test_alias_target_restrictions.py
│   ├── test_auto_mode_comprehensive.py
│   ├── test_auto_mode_custom_provider_only.py
│   ├── test_auto_mode_model_listing.py
│   ├── test_auto_mode_provider_selection.py
│   ├── test_auto_mode.py
│   ├── test_auto_model_planner_fix.py
│   ├── test_azure_openai_provider.py
│   ├── test_buggy_behavior_prevention.py
│   ├── test_cassette_semantic_matching.py
│   ├── test_challenge.py
│   ├── test_chat_codegen_integration.py
│   ├── test_chat_cross_model_continuation.py
│   ├── test_chat_openai_integration.py
│   ├── test_chat_simple.py
│   ├── test_clink_claude_agent.py
│   ├── test_clink_claude_parser.py
│   ├── test_clink_codex_agent.py
│   ├── test_clink_gemini_agent.py
│   ├── test_clink_gemini_parser.py
│   ├── test_clink_integration.py
│   ├── test_clink_parsers.py
│   ├── test_clink_tool.py
│   ├── test_collaboration.py
│   ├── test_config.py
│   ├── test_consensus_integration.py
│   ├── test_consensus_schema.py
│   ├── test_consensus.py
│   ├── test_conversation_continuation_integration.py
│   ├── test_conversation_field_mapping.py
│   ├── test_conversation_file_features.py
│   ├── test_conversation_memory.py
│   ├── test_conversation_missing_files.py
│   ├── test_custom_openai_temperature_fix.py
│   ├── test_custom_provider.py
│   ├── test_debug.py
│   ├── test_deploy_scripts.py
│   ├── test_dial_provider.py
│   ├── test_directory_expansion_tracking.py
│   ├── test_disabled_tools.py
│   ├── test_docker_claude_desktop_integration.py
│   ├── test_docker_config_complete.py
│   ├── test_docker_healthcheck.py
│   ├── test_docker_implementation.py
│   ├── test_docker_mcp_validation.py
│   ├── test_docker_security.py
│   ├── test_docker_volume_persistence.py
│   ├── test_file_protection.py
│   ├── test_gemini_token_usage.py
│   ├── test_image_support_integration.py
│   ├── test_image_validation.py
│   ├── test_integration_utf8.py
│   ├── test_intelligent_fallback.py
│   ├── test_issue_245_simple.py
│   ├── test_large_prompt_handling.py
│   ├── test_line_numbers_integration.py
│   ├── test_listmodels_restrictions.py
│   ├── test_listmodels.py
│   ├── test_mcp_error_handling.py
│   ├── test_model_enumeration.py
│   ├── test_model_metadata_continuation.py
│   ├── test_model_resolution_bug.py
│   ├── test_model_restrictions.py
│   ├── test_o3_pro_output_text_fix.py
│   ├── test_o3_temperature_fix_simple.py
│   ├── test_openai_compatible_token_usage.py
│   ├── test_openai_provider.py
│   ├── test_openrouter_provider.py
│   ├── test_openrouter_registry.py
│   ├── test_parse_model_option.py
│   ├── test_per_tool_model_defaults.py
│   ├── test_pii_sanitizer.py
│   ├── test_pip_detection_fix.py
│   ├── test_planner.py
│   ├── test_precommit_workflow.py
│   ├── test_prompt_regression.py
│   ├── test_prompt_size_limit_bug_fix.py
│   ├── test_provider_retry_logic.py
│   ├── test_provider_routing_bugs.py
│   ├── test_provider_utf8.py
│   ├── test_providers.py
│   ├── test_rate_limit_patterns.py
│   ├── test_refactor.py
│   ├── test_secaudit.py
│   ├── test_server.py
│   ├── test_supported_models_aliases.py
│   ├── test_thinking_modes.py
│   ├── test_tools.py
│   ├── test_tracer.py
│   ├── test_utf8_localization.py
│   ├── test_utils.py
│   ├── test_uvx_resource_packaging.py
│   ├── test_uvx_support.py
│   ├── test_workflow_file_embedding.py
│   ├── test_workflow_metadata.py
│   ├── test_workflow_prompt_size_validation_simple.py
│   ├── test_workflow_utf8.py
│   ├── test_xai_provider.py
│   ├── transport_helpers.py
│   └── triangle.png
├── tools
│   ├── __init__.py
│   ├── analyze.py
│   ├── apilookup.py
│   ├── challenge.py
│   ├── chat.py
│   ├── clink.py
│   ├── codereview.py
│   ├── consensus.py
│   ├── debug.py
│   ├── docgen.py
│   ├── listmodels.py
│   ├── models.py
│   ├── planner.py
│   ├── precommit.py
│   ├── refactor.py
│   ├── secaudit.py
│   ├── shared
│   │   ├── __init__.py
│   │   ├── base_models.py
│   │   ├── base_tool.py
│   │   ├── exceptions.py
│   │   └── schema_builders.py
│   ├── simple
│   │   ├── __init__.py
│   │   └── base.py
│   ├── testgen.py
│   ├── thinkdeep.py
│   ├── tracer.py
│   ├── version.py
│   └── workflow
│       ├── __init__.py
│       ├── base.py
│       ├── schema_builders.py
│       └── workflow_mixin.py
├── utils
│   ├── __init__.py
│   ├── client_info.py
│   ├── conversation_memory.py
│   ├── env.py
│   ├── file_types.py
│   ├── file_utils.py
│   ├── image_utils.py
│   ├── model_context.py
│   ├── model_restrictions.py
│   ├── security_config.py
│   ├── storage_backend.py
│   └── token_utils.py
└── zen-mcp-server
```

# Files

--------------------------------------------------------------------------------
/simulator_tests/test_analyze_validation.py:
--------------------------------------------------------------------------------

```python
   1 | #!/usr/bin/env python3
   2 | """
   3 | Analyze Tool Validation Test
   4 | 
   5 | Tests the analyze tool's capabilities using the new workflow architecture.
   6 | This validates that the new workflow-based implementation provides step-by-step
   7 | analysis with expert validation following the same patterns as debug/codereview tools.
   8 | """
   9 | 
  10 | import json
  11 | from typing import Optional
  12 | 
  13 | from .conversation_base_test import ConversationBaseTest
  14 | 
  15 | 
  16 | class AnalyzeValidationTest(ConversationBaseTest):
  17 |     """Test analyze tool with new workflow architecture"""
  18 | 
  19 |     @property
  20 |     def test_name(self) -> str:
  21 |         return "analyze_validation"
  22 | 
  23 |     @property
  24 |     def test_description(self) -> str:
  25 |         return "AnalyzeWorkflow tool validation with new workflow architecture"
  26 | 
  27 |     def run_test(self) -> bool:
  28 |         """Test analyze tool capabilities"""
  29 |         # Set up the test environment
  30 |         self.setUp()
  31 | 
  32 |         try:
  33 |             self.logger.info("Test: AnalyzeWorkflow tool validation (new architecture)")
  34 | 
  35 |             # Create test files for analysis
  36 |             self._create_analysis_codebase()
  37 | 
  38 |             # Test 1: Single analysis session with multiple steps
  39 |             if not self._test_single_analysis_session():
  40 |                 return False
  41 | 
  42 |             # Test 2: Analysis flow that requires refocusing
  43 |             if not self._test_analysis_refocus_flow():
  44 |                 return False
  45 | 
  46 |             # Test 3: Complete analysis with expert validation
  47 |             if not self._test_complete_analysis_with_expert():
  48 |                 return False
  49 | 
  50 |             # Test 4: Certain confidence behavior
  51 |             if not self._test_certain_confidence():
  52 |                 return False
  53 | 
  54 |             # Test 5: Context-aware file embedding
  55 |             if not self._test_context_aware_file_embedding():
  56 |                 return False
  57 | 
  58 |             # Test 6: Different analysis types
  59 |             if not self._test_analysis_types():
  60 |                 return False
  61 | 
  62 |             self.logger.info("  ✅ All analyze validation tests passed")
  63 |             return True
  64 | 
  65 |         except Exception as e:
  66 |             self.logger.error(f"AnalyzeWorkflow validation test failed: {e}")
  67 |             return False
  68 | 
  69 |     def _create_analysis_codebase(self):
  70 |         """Create test files representing a realistic codebase for analysis"""
  71 |         # Create a Python microservice with various architectural patterns
  72 |         main_service = """#!/usr/bin/env python3
  73 | import asyncio
  74 | import json
  75 | from datetime import datetime
  76 | from typing import Dict, List, Optional
  77 | 
  78 | from fastapi import FastAPI, HTTPException, Depends
  79 | from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine
  80 | from sqlalchemy.orm import sessionmaker
  81 | import redis
  82 | import logging
  83 | 
  84 | # Global configurations - could be improved
  85 | DATABASE_URL = "postgresql://user:pass@localhost/db"
  86 | REDIS_URL = "redis://localhost:6379"
  87 | 
  88 | app = FastAPI(title="User Management Service")
  89 | 
  90 | # Database setup
  91 | engine = create_async_engine(DATABASE_URL, echo=True)
  92 | AsyncSessionLocal = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False)
  93 | 
  94 | # Redis connection - potential singleton pattern issue
  95 | redis_client = redis.Redis.from_url(REDIS_URL)
  96 | 
  97 | class UserService:
  98 |     def __init__(self, db: AsyncSession):
  99 |         self.db = db
 100 |         self.cache = redis_client  # Direct dependency on global
 101 | 
 102 |     async def get_user(self, user_id: int) -> Optional[Dict]:
 103 |         # Cache key generation - could be centralized
 104 |         cache_key = f"user:{user_id}"
 105 | 
 106 |         # Check cache first
 107 |         cached = self.cache.get(cache_key)
 108 |         if cached:
 109 |             return json.loads(cached)
 110 | 
 111 |         # Database query - no error handling
 112 |         result = await self.db.execute(
 113 |             "SELECT * FROM users WHERE id = %s", (user_id,)
 114 |         )
 115 |         user_data = result.fetchone()        if user_data:
 116 |             # Cache for 1 hour - magic number
 117 |             self.cache.setex(cache_key, 3600, json.dumps(user_data, ensure_ascii=False))
 118 | 
 119 |         return user_data
 120 | 
 121 |     async def create_user(self, user_data: Dict) -> Dict:
 122 |         # Input validation missing
 123 |         # No transaction handling
 124 |         # No audit logging
 125 | 
 126 |         query = "INSERT INTO users (name, email) VALUES (%s, %s) RETURNING id"
 127 |         result = await self.db.execute(query, (user_data['name'], user_data['email']))
 128 |         user_id = result.fetchone()[0]
 129 | 
 130 |         # Cache invalidation strategy missing
 131 | 
 132 |         return {"id": user_id, **user_data}
 133 | 
 134 | @app.get("/users/{user_id}")
 135 | async def get_user_endpoint(user_id: int, db: AsyncSession = Depends(get_db)):
 136 |     service = UserService(db)
 137 |     user = await service.get_user(user_id)
 138 | 
 139 |     if not user:
 140 |         raise HTTPException(status_code=404, detail="User not found")
 141 | 
 142 |     return user
 143 | 
 144 | @app.post("/users")
 145 | async def create_user_endpoint(user_data: dict, db: AsyncSession = Depends(get_db)):
 146 |     service = UserService(db)
 147 |     return await service.create_user(user_data)
 148 | 
 149 | async def get_db():
 150 |     async with AsyncSessionLocal() as session:
 151 |         yield session
 152 | """
 153 | 
 154 |         # Create config module with various architectural concerns
 155 |         config_module = """#!/usr/bin/env python3
 156 | import os
 157 | from dataclasses import dataclass
 158 | from typing import Optional
 159 | 
 160 | # Configuration approach could be improved
 161 | @dataclass
 162 | class DatabaseConfig:
 163 |     url: str = os.getenv("DATABASE_URL", "postgresql://localhost/app")
 164 |     pool_size: int = int(os.getenv("DB_POOL_SIZE", "5"))
 165 |     max_overflow: int = int(os.getenv("DB_MAX_OVERFLOW", "10"))
 166 |     echo: bool = os.getenv("DB_ECHO", "false").lower() == "true"
 167 | 
 168 | @dataclass
 169 | class CacheConfig:
 170 |     redis_url: str = os.getenv("REDIS_URL", "redis://localhost:6379")
 171 |     default_ttl: int = int(os.getenv("CACHE_TTL", "3600"))
 172 |     max_connections: int = int(os.getenv("REDIS_MAX_CONN", "20"))
 173 | 
 174 | @dataclass
 175 | class AppConfig:
 176 |     environment: str = os.getenv("ENVIRONMENT", "development")
 177 |     debug: bool = os.getenv("DEBUG", "false").lower() == "true"
 178 |     log_level: str = os.getenv("LOG_LEVEL", "INFO")
 179 | 
 180 |     # Nested config objects
 181 |     database: DatabaseConfig = DatabaseConfig()
 182 |     cache: CacheConfig = CacheConfig()
 183 | 
 184 |     # Security settings scattered
 185 |     secret_key: str = os.getenv("SECRET_KEY", "dev-key-not-secure")
 186 |     jwt_algorithm: str = "HS256"
 187 |     jwt_expiration: int = 86400  # 24 hours
 188 | 
 189 |     def __post_init__(self):
 190 |         # Validation logic could be centralized
 191 |         if self.environment == "production" and self.secret_key == "dev-key-not-secure":
 192 |             raise ValueError("Production environment requires secure secret key")
 193 | 
 194 | # Global configuration instance - potential issues
 195 | config = AppConfig()
 196 | 
 197 | # Helper functions that could be methods
 198 | def get_database_url() -> str:
 199 |     return config.database.url
 200 | 
 201 | def get_cache_config() -> dict:
 202 |     return {
 203 |         "url": config.cache.redis_url,
 204 |         "ttl": config.cache.default_ttl,
 205 |         "max_connections": config.cache.max_connections
 206 |     }
 207 | 
 208 | def is_production() -> bool:
 209 |     return config.environment == "production"
 210 | 
 211 | def should_enable_debug() -> bool:
 212 |     return config.debug and not is_production()
 213 | """
 214 | 
 215 |         # Create models module with database concerns
 216 |         models_module = """#!/usr/bin/env python3
 217 | from datetime import datetime
 218 | from typing import Optional, List
 219 | from sqlalchemy import Column, Integer, String, DateTime, Boolean, ForeignKey, Text
 220 | from sqlalchemy.ext.declarative import declarative_base
 221 | from sqlalchemy.orm import relationship
 222 | import json
 223 | 
 224 | Base = declarative_base()
 225 | 
 226 | class User(Base):
 227 |     __tablename__ = "users"
 228 | 
 229 |     id = Column(Integer, primary_key=True)
 230 |     email = Column(String(255), unique=True, nullable=False)
 231 |     name = Column(String(255), nullable=False)
 232 |     is_active = Column(Boolean, default=True)
 233 |     created_at = Column(DateTime, default=datetime.utcnow)
 234 |     updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow)
 235 | 
 236 |     # Relationship could be optimized
 237 |     profiles = relationship("UserProfile", back_populates="user", lazy="select")
 238 |     audit_logs = relationship("AuditLog", back_populates="user")
 239 | 
 240 |     def to_dict(self) -> dict:
 241 |         # Serialization logic mixed with model - could be separated
 242 |         return {
 243 |             "id": self.id,
 244 |             "email": self.email,
 245 |             "name": self.name,
 246 |             "is_active": self.is_active,
 247 |             "created_at": self.created_at.isoformat() if self.created_at else None,
 248 |             "updated_at": self.updated_at.isoformat() if self.updated_at else None
 249 |         }
 250 | 
 251 |     def update_from_dict(self, data: dict):
 252 |         # Update logic could be more robust
 253 |         for key, value in data.items():
 254 |             if hasattr(self, key) and key not in ['id', 'created_at']:
 255 |                 setattr(self, key, value)
 256 |         self.updated_at = datetime.utcnow()
 257 | 
 258 | class UserProfile(Base):
 259 |     __tablename__ = "user_profiles"
 260 | 
 261 |     id = Column(Integer, primary_key=True)
 262 |     user_id = Column(Integer, ForeignKey("users.id"), nullable=False)
 263 |     bio = Column(Text)
 264 |     avatar_url = Column(String(500))
 265 |     preferences = Column(Text)  # JSON stored as text - could use JSON column
 266 | 
 267 |     user = relationship("User", back_populates="profiles")
 268 | 
 269 |     def get_preferences(self) -> dict:
 270 |         # JSON handling could be centralized
 271 |         try:
 272 |             return json.loads(self.preferences) if self.preferences else {}
 273 |         except json.JSONDecodeError:
 274 |             return {}    def set_preferences(self, prefs: dict):
 275 |         self.preferences = json.dumps(prefs, ensure_ascii=False)
 276 | 
 277 | class AuditLog(Base):
 278 |     __tablename__ = "audit_logs"
 279 | 
 280 |     id = Column(Integer, primary_key=True)
 281 |     user_id = Column(Integer, ForeignKey("users.id"), nullable=False)
 282 |     action = Column(String(100), nullable=False)
 283 |     details = Column(Text)  # JSON stored as text
 284 |     ip_address = Column(String(45))  # IPv6 support
 285 |     user_agent = Column(Text)
 286 |     timestamp = Column(DateTime, default=datetime.utcnow)
 287 | 
 288 |     user = relationship("User", back_populates="audit_logs")
 289 | 
 290 |     @classmethod
 291 |     def log_action(cls, db_session, user_id: int, action: str, details: dict = None,
 292 |                    ip_address: str = None, user_agent: str = None):
 293 |         # Factory method pattern - could be improved
 294 |         log = cls(
 295 |             user_id=user_id,
 296 |             action=action,
 297 |             details=json.dumps(details, ensure_ascii=False) if details else None,
 298 |             ip_address=ip_address,
 299 |             user_agent=user_agent
 300 |         )
 301 |         db_session.add(log)
 302 |         return log
 303 | """
 304 | 
 305 |         # Create utility module with various helper functions
 306 |         utils_module = """#!/usr/bin/env python3
 307 | import hashlib
 308 | import secrets
 309 | import re
 310 | from datetime import datetime, timedelta
 311 | from typing import Optional, Dict, Any
 312 | import logging
 313 | 
 314 | # Logging setup - could be centralized
 315 | logger = logging.getLogger(__name__)
 316 | 
 317 | class ValidationError(Exception):
 318 |     \"\"\"Custom exception for validation errors\"\"\"
 319 |     pass
 320 | 
 321 | def validate_email(email: str) -> bool:
 322 |     # Email validation - could use more robust library
 323 |     pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'
 324 |     return bool(re.match(pattern, email))
 325 | 
 326 | def validate_password(password: str) -> tuple[bool, str]:
 327 |     # Password validation rules - could be configurable
 328 |     if len(password) < 8:
 329 |         return False, "Password must be at least 8 characters"
 330 | 
 331 |     if not re.search(r'[A-Z]', password):
 332 |         return False, "Password must contain uppercase letter"
 333 | 
 334 |     if not re.search(r'[a-z]', password):
 335 |         return False, "Password must contain lowercase letter"
 336 | 
 337 |     if not re.search(r'[0-9]', password):
 338 |         return False, "Password must contain number"
 339 | 
 340 |     return True, "Valid password"
 341 | 
 342 | def hash_password(password: str) -> str:
 343 |     # Password hashing - could use more secure algorithm
 344 |     salt = secrets.token_hex(32)
 345 |     password_hash = hashlib.pbkdf2_hmac('sha256', password.encode(), salt.encode(), 100000)
 346 |     return f"{salt}:{password_hash.hex()}"
 347 | 
 348 | def verify_password(password: str, hashed: str) -> bool:
 349 |     # Password verification
 350 |     try:
 351 |         salt, hash_hex = hashed.split(':', 1)
 352 |         password_hash = hashlib.pbkdf2_hmac('sha256', password.encode(), salt.encode(), 100000)
 353 |         return password_hash.hex() == hash_hex
 354 |     except ValueError:
 355 |         return False
 356 | 
 357 | def generate_cache_key(*args, prefix: str = "", separator: str = ":") -> str:
 358 |     # Cache key generation - could be more sophisticated
 359 |     parts = [str(arg) for arg in args if arg is not None]
 360 |     if prefix:
 361 |         parts.insert(0, prefix)
 362 |     return separator.join(parts)
 363 | 
 364 | def parse_datetime(date_string: str) -> Optional[datetime]:
 365 |     # Date parsing with multiple format support
 366 |     formats = [
 367 |         "%Y-%m-%d %H:%M:%S",
 368 |         "%Y-%m-%dT%H:%M:%S",
 369 |         "%Y-%m-%dT%H:%M:%S.%f",
 370 |         "%Y-%m-%d"
 371 |     ]
 372 | 
 373 |     for fmt in formats:
 374 |         try:
 375 |             return datetime.strptime(date_string, fmt)
 376 |         except ValueError:
 377 |             continue
 378 | 
 379 |     logger.warning(f"Unable to parse datetime: {date_string}")
 380 |     return None
 381 | 
 382 | def calculate_expiry(hours: int = 24) -> datetime:
 383 |     # Expiry calculation - could be more flexible
 384 |     return datetime.utcnow() + timedelta(hours=hours)
 385 | 
 386 | def sanitize_input(data: Dict[str, Any]) -> Dict[str, Any]:
 387 |     # Input sanitization - basic implementation
 388 |     sanitized = {}
 389 | 
 390 |     for key, value in data.items():
 391 |         if isinstance(value, str):
 392 |             # Basic HTML/script tag removal
 393 |             value = re.sub(r'<[^>]*>', '', value)
 394 |             value = value.strip()
 395 | 
 396 |         # Type validation could be more comprehensive
 397 |         if value is not None and value != "":
 398 |             sanitized[key] = value
 399 | 
 400 |     return sanitized
 401 | 
 402 | def format_response(data: Any, status: str = "success", message: str = None) -> Dict[str, Any]:
 403 |     # Response formatting - could be more standardized
 404 |     response = {
 405 |         "status": status,
 406 |         "data": data,
 407 |         "timestamp": datetime.utcnow().isoformat()
 408 |     }
 409 | 
 410 |     if message:
 411 |         response["message"] = message
 412 | 
 413 |     return response
 414 | 
 415 | class PerformanceTimer:
 416 |     # Performance measurement utility
 417 |     def __init__(self, name: str):
 418 |         self.name = name
 419 |         self.start_time = None
 420 | 
 421 |     def __enter__(self):
 422 |         self.start_time = datetime.now()
 423 |         return self
 424 | 
 425 |     def __exit__(self, exc_type, exc_val, exc_tb):
 426 |         if self.start_time:
 427 |             duration = datetime.now() - self.start_time
 428 |             logger.info(f"Performance: {self.name} took {duration.total_seconds():.3f}s")
 429 | """
 430 | 
 431 |         # Create test files
 432 |         self.main_service_file = self.create_additional_test_file("main_service.py", main_service)
 433 |         self.config_file = self.create_additional_test_file("config.py", config_module)
 434 |         self.models_file = self.create_additional_test_file("models.py", models_module)
 435 |         self.utils_file = self.create_additional_test_file("utils.py", utils_module)
 436 | 
 437 |         self.logger.info("  ✅ Created test codebase with 4 files for analysis")
 438 | 
 439 |     def _test_single_analysis_session(self) -> bool:
 440 |         """Test a complete analysis session with multiple steps"""
 441 |         try:
 442 |             self.logger.info("  1.1: Testing single analysis session")
 443 | 
 444 |             # Step 1: Start analysis
 445 |             self.logger.info("    1.1.1: Step 1 - Initial analysis")
 446 |             response1, continuation_id = self.call_mcp_tool(
 447 |                 "analyze",
 448 |                 {
 449 |                     "step": "I need to analyze this Python microservice codebase for architectural patterns, design decisions, and improvement opportunities. Let me start by examining the overall structure and understanding the technology stack.",
 450 |                     "step_number": 1,
 451 |                     "total_steps": 4,
 452 |                     "next_step_required": True,
 453 |                     "findings": "Starting analysis of FastAPI microservice with PostgreSQL, Redis, and SQLAlchemy. Initial examination shows user management functionality with caching layer.",
 454 |                     "files_checked": [self.main_service_file],
 455 |                     "relevant_files": [self.main_service_file, self.config_file, self.models_file, self.utils_file],
 456 |                     "prompt": "Analyze this microservice architecture for scalability, maintainability, and design patterns",
 457 |                     "analysis_type": "architecture",
 458 |                 },
 459 |             )
 460 | 
 461 |             if not response1 or not continuation_id:
 462 |                 self.logger.error("Failed to get initial analysis response")
 463 |                 return False
 464 | 
 465 |             # Parse and validate JSON response
 466 |             response1_data = self._parse_analyze_response(response1)
 467 |             if not response1_data:
 468 |                 return False
 469 | 
 470 |             # Validate step 1 response structure - expect pause_for_analysis for next_step_required=True
 471 |             if not self._validate_step_response(response1_data, 1, 4, True, "pause_for_analysis"):
 472 |                 return False
 473 | 
 474 |             self.logger.info(f"    ✅ Step 1 successful, continuation_id: {continuation_id}")
 475 | 
 476 |             # Step 2: Deeper examination
 477 |             self.logger.info("    1.1.2: Step 2 - Architecture examination")
 478 |             response2, _ = self.call_mcp_tool(
 479 |                 "analyze",
 480 |                 {
 481 |                     "step": "Now examining the configuration and models modules to understand data architecture and configuration management patterns.",
 482 |                     "step_number": 2,
 483 |                     "total_steps": 4,
 484 |                     "next_step_required": True,
 485 |                     "findings": "Found several architectural concerns: direct Redis dependency in service class, global configuration instance, missing error handling in database operations, and mixed serialization logic in models.",
 486 |                     "files_checked": [self.main_service_file, self.config_file, self.models_file],
 487 |                     "relevant_files": [self.main_service_file, self.config_file, self.models_file],
 488 |                     "relevant_context": ["UserService", "AppConfig", "User.to_dict"],
 489 |                     "issues_found": [
 490 |                         {
 491 |                             "severity": "medium",
 492 |                             "description": "Direct dependency on global Redis client in UserService",
 493 |                         },
 494 |                         {"severity": "low", "description": "Global configuration instance could cause testing issues"},
 495 |                     ],
 496 |                     "confidence": "medium",
 497 |                     "continuation_id": continuation_id,
 498 |                 },
 499 |             )
 500 | 
 501 |             if not response2:
 502 |                 self.logger.error("Failed to continue analysis to step 2")
 503 |                 return False
 504 | 
 505 |             response2_data = self._parse_analyze_response(response2)
 506 |             if not self._validate_step_response(response2_data, 2, 4, True, "pause_for_analysis"):
 507 |                 return False
 508 | 
 509 |             # Check analysis status tracking
 510 |             analysis_status = response2_data.get("analysis_status", {})
 511 |             if analysis_status.get("files_checked", 0) < 3:
 512 |                 self.logger.error("Files checked count not properly tracked")
 513 |                 return False
 514 | 
 515 |             if analysis_status.get("insights_by_severity", {}).get("medium", 0) < 1:
 516 |                 self.logger.error("Medium severity insights not properly tracked")
 517 |                 return False
 518 | 
 519 |             if analysis_status.get("analysis_confidence") != "medium":
 520 |                 self.logger.error("Confidence level not properly tracked")
 521 |                 return False
 522 | 
 523 |             self.logger.info("    ✅ Step 2 successful with proper tracking")
 524 | 
 525 |             # Store continuation_id for next test
 526 |             self.analysis_continuation_id = continuation_id
 527 |             return True
 528 | 
 529 |         except Exception as e:
 530 |             self.logger.error(f"Single analysis session test failed: {e}")
 531 |             return False
 532 | 
 533 |     def _test_analysis_refocus_flow(self) -> bool:
 534 |         """Test analysis flow that requires refocusing to revise findings"""
 535 |         try:
 536 |             self.logger.info("  1.2: Testing analysis refocus workflow")
 537 | 
 538 |             # Start a new analysis for testing refocus behaviour
 539 |             self.logger.info("    1.2.1: Start analysis for refocus test")
 540 |             response1, continuation_id = self.call_mcp_tool(
 541 |                 "analyze",
 542 |                 {
 543 |                     "step": "Analyzing performance characteristics of the data processing pipeline",
 544 |                     "step_number": 1,
 545 |                     "total_steps": 4,
 546 |                     "next_step_required": True,
 547 |                     "findings": "Initial analysis suggests database queries might be the bottleneck",
 548 |                     "files_checked": [self.main_service_file],
 549 |                     "relevant_files": [self.main_service_file, self.utils_file],
 550 |                     "prompt": "Analyze performance bottlenecks in this microservice",
 551 |                     "analysis_type": "performance",
 552 |                 },
 553 |             )
 554 | 
 555 |             if not response1 or not continuation_id:
 556 |                 self.logger.error("Failed to start refocus test analysis")
 557 |                 return False
 558 | 
 559 |             # Step 2: Wrong direction
 560 |             self.logger.info("    1.2.2: Step 2 - Incorrect analysis path")
 561 |             response2, _ = self.call_mcp_tool(
 562 |                 "analyze",
 563 |                 {
 564 |                     "step": "Focusing on database optimization strategies",
 565 |                     "step_number": 2,
 566 |                     "total_steps": 4,
 567 |                     "next_step_required": True,
 568 |                     "findings": "Database queries seem reasonable, might be looking in wrong direction",
 569 |                     "files_checked": [self.main_service_file, self.models_file],
 570 |                     "relevant_files": [],
 571 |                     "relevant_context": [],
 572 |                     "issues_found": [],
 573 |                     "confidence": "low",
 574 |                     "continuation_id": continuation_id,
 575 |                 },
 576 |             )
 577 | 
 578 |             if not response2:
 579 |                 self.logger.error("Failed to continue to step 2")
 580 |                 return False
 581 | 
 582 |             # Step 3: Adjust investigation path
 583 |             self.logger.info("    1.2.3: Step 3 - Refocus the analysis")
 584 |             response3, _ = self.call_mcp_tool(
 585 |                 "analyze",
 586 |                 {
 587 |                     "step": "Refocus - the performance issue might not be database related. Let me examine the caching and serialization patterns instead.",
 588 |                     "step_number": 3,
 589 |                     "total_steps": 4,
 590 |                     "next_step_required": True,
 591 |                     "findings": "Found potential performance issues in JSON serialization and cache key generation patterns in utils module",
 592 |                     "files_checked": [self.utils_file, self.models_file],
 593 |                     "relevant_files": [self.utils_file, self.models_file],
 594 |                     "relevant_context": ["generate_cache_key", "User.to_dict", "sanitize_input"],
 595 |                     "issues_found": [
 596 |                         {"severity": "medium", "description": "JSON serialization in model classes could be optimized"},
 597 |                         {"severity": "low", "description": "Cache key generation lacks proper escaping"},
 598 |                     ],
 599 |                     "confidence": "medium",
 600 |                     "continuation_id": continuation_id,
 601 |                 },
 602 |             )
 603 | 
 604 |             if not response3:
 605 |                 self.logger.error("Failed to refocus analysis")
 606 |                 return False
 607 | 
 608 |             response3_data = self._parse_analyze_response(response3)
 609 |             if not self._validate_step_response(response3_data, 3, 4, True, "pause_for_analysis"):
 610 |                 return False
 611 | 
 612 |             self.logger.info("    ✅ Analysis refocus flow working correctly")
 613 |             return True
 614 | 
 615 |         except Exception as e:
 616 |             self.logger.error(f"Backtracking test failed: {e}")
 617 |             return False
 618 | 
 619 |     def _test_complete_analysis_with_expert(self) -> bool:
 620 |         """Test complete analysis ending with expert validation"""
 621 |         try:
 622 |             self.logger.info("  1.3: Testing complete analysis with expert validation")
 623 | 
 624 |             # Use the continuation from first test
 625 |             continuation_id = getattr(self, "analysis_continuation_id", None)
 626 |             if not continuation_id:
 627 |                 # Start fresh if no continuation available
 628 |                 self.logger.info("    1.3.0: Starting fresh analysis")
 629 |                 response0, continuation_id = self.call_mcp_tool(
 630 |                     "analyze",
 631 |                     {
 632 |                         "step": "Analyzing the microservice architecture for improvement opportunities",
 633 |                         "step_number": 1,
 634 |                         "total_steps": 2,
 635 |                         "next_step_required": True,
 636 |                         "findings": "Found dependency injection and configuration management issues",
 637 |                         "files_checked": [self.main_service_file, self.config_file],
 638 |                         "relevant_files": [self.main_service_file, self.config_file],
 639 |                         "relevant_context": ["UserService", "AppConfig"],
 640 |                         "prompt": "Analyze architectural patterns and improvement opportunities",
 641 |                         "analysis_type": "architecture",
 642 |                     },
 643 |                 )
 644 |                 if not response0 or not continuation_id:
 645 |                     self.logger.error("Failed to start fresh analysis")
 646 |                     return False
 647 | 
 648 |             # Final step - trigger expert validation
 649 |             self.logger.info("    1.3.1: Final step - complete analysis")
 650 |             response_final, _ = self.call_mcp_tool(
 651 |                 "analyze",
 652 |                 {
 653 |                     "step": "Analysis complete. I have identified key architectural patterns and strategic improvement opportunities across scalability, maintainability, and performance dimensions.",
 654 |                     "step_number": 2,
 655 |                     "total_steps": 2,
 656 |                     "next_step_required": False,  # Final step - triggers expert validation
 657 |                     "findings": "Key findings: 1) Tight coupling via global dependencies, 2) Missing error handling and transaction management, 3) Mixed concerns in model classes, 4) Configuration management could be more flexible, 5) Opportunities for dependency injection and better separation of concerns.",
 658 |                     "files_checked": [self.main_service_file, self.config_file, self.models_file, self.utils_file],
 659 |                     "relevant_files": [self.main_service_file, self.config_file, self.models_file, self.utils_file],
 660 |                     "relevant_context": ["UserService", "AppConfig", "User", "validate_email"],
 661 |                     "issues_found": [
 662 |                         {"severity": "high", "description": "Tight coupling via global Redis client and configuration"},
 663 |                         {"severity": "medium", "description": "Missing transaction management in create_user"},
 664 |                         {"severity": "medium", "description": "Serialization logic mixed with model classes"},
 665 |                         {"severity": "low", "description": "Magic numbers and hardcoded values scattered throughout"},
 666 |                     ],
 667 |                     "confidence": "high",
 668 |                     "continuation_id": continuation_id,
 669 |                     "model": "flash",  # Use flash for expert validation
 670 |                 },
 671 |             )
 672 | 
 673 |             if not response_final:
 674 |                 self.logger.error("Failed to complete analysis")
 675 |                 return False
 676 | 
 677 |             response_final_data = self._parse_analyze_response(response_final)
 678 |             if not response_final_data:
 679 |                 return False
 680 | 
 681 |             # Validate final response structure - expect calling_expert_analysis for next_step_required=False
 682 |             if response_final_data.get("status") != "calling_expert_analysis":
 683 |                 self.logger.error(
 684 |                     f"Expected status 'calling_expert_analysis', got '{response_final_data.get('status')}'"
 685 |                 )
 686 |                 return False
 687 | 
 688 |             if not response_final_data.get("analysis_complete"):
 689 |                 self.logger.error("Expected analysis_complete=true for final step")
 690 |                 return False  # Check for expert analysis
 691 |             if "expert_analysis" not in response_final_data:
 692 |                 self.logger.error("Missing expert_analysis in final response")
 693 |                 return False
 694 | 
 695 |             expert_analysis = response_final_data.get("expert_analysis", {})
 696 | 
 697 |             # Check for expected analysis content (checking common patterns)
 698 |             analysis_text = json.dumps(expert_analysis, ensure_ascii=False).lower()
 699 | 
 700 |             # Look for architectural analysis indicators
 701 |             arch_indicators = ["architecture", "pattern", "coupling", "dependency", "scalability", "maintainability"]
 702 |             found_indicators = sum(1 for indicator in arch_indicators if indicator in analysis_text)
 703 | 
 704 |             if found_indicators >= 3:
 705 |                 self.logger.info("    ✅ Expert analysis identified architectural patterns correctly")
 706 |             else:
 707 |                 self.logger.warning(
 708 |                     f"    ⚠️ Expert analysis may not have fully analyzed architecture (found {found_indicators}/6 indicators)"
 709 |                 )
 710 | 
 711 |             # Check complete analysis summary
 712 |             if "complete_analysis" not in response_final_data:
 713 |                 self.logger.error("Missing complete_analysis in final response")
 714 |                 return False
 715 | 
 716 |             complete_analysis = response_final_data["complete_analysis"]
 717 |             if not complete_analysis.get("relevant_context"):
 718 |                 self.logger.error("Missing relevant context in complete analysis")
 719 |                 return False
 720 | 
 721 |             if "UserService" not in complete_analysis["relevant_context"]:
 722 |                 self.logger.error("Expected context not found in analysis summary")
 723 |                 return False
 724 | 
 725 |             self.logger.info("    ✅ Complete analysis with expert validation successful")
 726 |             return True
 727 | 
 728 |         except Exception as e:
 729 |             self.logger.error(f"Complete analysis test failed: {e}")
 730 |             return False
 731 | 
 732 |     def _test_certain_confidence(self) -> bool:
 733 |         """Test final step analysis completion (analyze tool doesn't use confidence levels)"""
 734 |         try:
 735 |             self.logger.info("  1.4: Testing final step analysis completion")
 736 | 
 737 |             # Test final step - analyze tool doesn't use confidence levels, but we test completion
 738 |             self.logger.info("    1.4.1: Final step analysis")
 739 |             response_final, _ = self.call_mcp_tool(
 740 |                 "analyze",
 741 |                 {
 742 |                     "step": "I have completed a comprehensive analysis of the architectural patterns and improvement opportunities.",
 743 |                     "step_number": 1,
 744 |                     "total_steps": 1,
 745 |                     "next_step_required": False,  # Final step - should trigger expert analysis
 746 |                     "findings": "Complete architectural analysis reveals: FastAPI microservice with clear separation needs, dependency injection opportunities, and performance optimization potential. Key patterns identified: service layer, repository-like data access, configuration management, and utility functions.",
 747 |                     "files_checked": [self.main_service_file, self.config_file, self.models_file, self.utils_file],
 748 |                     "relevant_files": [self.main_service_file, self.config_file, self.models_file, self.utils_file],
 749 |                     "relevant_context": ["UserService", "AppConfig", "User", "validate_email"],
 750 |                     "issues_found": [
 751 |                         {"severity": "high", "description": "Global dependencies create tight coupling"},
 752 |                         {"severity": "medium", "description": "Transaction management missing in critical operations"},
 753 |                     ],
 754 |                     "prompt": "Comprehensive architectural analysis",
 755 |                     "analysis_type": "architecture",
 756 |                     "model": "flash",
 757 |                 },
 758 |             )
 759 | 
 760 |             if not response_final:
 761 |                 self.logger.error("Failed to test final step analysis")
 762 |                 return False
 763 | 
 764 |             response_final_data = self._parse_analyze_response(response_final)
 765 |             if not response_final_data:
 766 |                 return False
 767 | 
 768 |             # Validate final step response - should trigger expert analysis
 769 |             expected_status = "calling_expert_analysis"
 770 |             if response_final_data.get("status") != expected_status:
 771 |                 self.logger.error(f"Expected status '{expected_status}', got '{response_final_data.get('status')}'")
 772 |                 return False
 773 | 
 774 |             # Check that expert analysis was performed
 775 |             expert_analysis = response_final_data.get("expert_analysis", {})
 776 |             if not expert_analysis:
 777 |                 self.logger.error("Expert analysis should be present for final step")
 778 |                 return False
 779 | 
 780 |             # Expert analysis should complete successfully
 781 |             if expert_analysis.get("status") != "analysis_complete":
 782 |                 self.logger.error(
 783 |                     f"Expert analysis status: {expert_analysis.get('status')} (expected analysis_complete)"
 784 |                 )
 785 |                 return False
 786 | 
 787 |             self.logger.info("    ✅ Final step analysis completion working correctly")
 788 |             return True
 789 | 
 790 |         except Exception as e:
 791 |             self.logger.error(f"Final step analysis test failed: {e}")
 792 |             return False
 793 | 
 794 |     def _test_context_aware_file_embedding(self) -> bool:
 795 |         """Test context-aware file embedding optimization"""
 796 |         try:
 797 |             self.logger.info("  1.5: Testing context-aware file embedding")
 798 | 
 799 |             # Test 1: New conversation, intermediate step - should only reference files
 800 |             self.logger.info("    1.5.1: New conversation intermediate step (should reference only)")
 801 |             response1, continuation_id = self.call_mcp_tool(
 802 |                 "analyze",
 803 |                 {
 804 |                     "step": "Starting architectural analysis of microservice components",
 805 |                     "step_number": 1,
 806 |                     "total_steps": 3,
 807 |                     "next_step_required": True,  # Intermediate step
 808 |                     "findings": "Initial analysis of service layer and configuration patterns",
 809 |                     "files_checked": [self.main_service_file, self.config_file],
 810 |                     "relevant_files": [self.main_service_file],  # This should be referenced, not embedded
 811 |                     "relevant_context": ["UserService"],
 812 |                     "issues_found": [{"severity": "medium", "description": "Direct Redis dependency in service class"}],
 813 |                     "confidence": "low",
 814 |                     "prompt": "Analyze service architecture patterns",
 815 |                     "analysis_type": "architecture",
 816 |                     "model": "flash",
 817 |                 },
 818 |             )
 819 | 
 820 |             if not response1 or not continuation_id:
 821 |                 self.logger.error("Failed to start context-aware file embedding test")
 822 |                 return False
 823 | 
 824 |             response1_data = self._parse_analyze_response(response1)
 825 |             if not response1_data:
 826 |                 return False
 827 | 
 828 |             # Check file context - should be reference_only for intermediate step
 829 |             file_context = response1_data.get("file_context", {})
 830 |             if file_context.get("type") != "reference_only":
 831 |                 self.logger.error(f"Expected reference_only file context, got: {file_context.get('type')}")
 832 |                 return False
 833 | 
 834 |             if "Files referenced but not embedded" not in file_context.get("context_optimization", ""):
 835 |                 self.logger.error("Expected context optimization message for reference_only")
 836 |                 return False
 837 | 
 838 |             self.logger.info("    ✅ Intermediate step correctly uses reference_only file context")
 839 | 
 840 |             # Test 2: Final step - should embed files for expert validation
 841 |             self.logger.info("    1.5.2: Final step (should embed files)")
 842 |             response2, _ = self.call_mcp_tool(
 843 |                 "analyze",
 844 |                 {
 845 |                     "step": "Analysis complete - identified key architectural patterns and improvement opportunities",
 846 |                     "step_number": 2,
 847 |                     "total_steps": 2,
 848 |                     "next_step_required": False,  # Final step - should embed files
 849 |                     "continuation_id": continuation_id,
 850 |                     "findings": "Complete analysis reveals dependency injection opportunities, configuration management improvements, and separation of concerns enhancements",
 851 |                     "files_checked": [self.main_service_file, self.config_file, self.models_file],
 852 |                     "relevant_files": [self.main_service_file, self.config_file],  # Should be fully embedded
 853 |                     "relevant_context": ["UserService", "AppConfig"],
 854 |                     "issues_found": [
 855 |                         {"severity": "high", "description": "Global dependencies create architectural coupling"},
 856 |                         {"severity": "medium", "description": "Configuration management lacks flexibility"},
 857 |                     ],
 858 |                     "confidence": "high",
 859 |                     "model": "flash",
 860 |                 },
 861 |             )
 862 | 
 863 |             if not response2:
 864 |                 self.logger.error("Failed to complete to final step")
 865 |                 return False
 866 | 
 867 |             response2_data = self._parse_analyze_response(response2)
 868 |             if not response2_data:
 869 |                 return False
 870 | 
 871 |             # Check file context - should be fully_embedded for final step
 872 |             file_context2 = response2_data.get("file_context", {})
 873 |             if file_context2.get("type") != "fully_embedded":
 874 |                 self.logger.error(
 875 |                     f"Expected fully_embedded file context for final step, got: {file_context2.get('type')}"
 876 |                 )
 877 |                 return False
 878 | 
 879 |             if "Full file content embedded for expert analysis" not in file_context2.get("context_optimization", ""):
 880 |                 self.logger.error("Expected expert analysis optimization message for fully_embedded")
 881 |                 return False
 882 | 
 883 |             # Verify expert analysis was called for final step
 884 |             if response2_data.get("status") != "calling_expert_analysis":
 885 |                 self.logger.error("Final step should trigger expert analysis")
 886 |                 return False
 887 | 
 888 |             if "expert_analysis" not in response2_data:
 889 |                 self.logger.error("Expert analysis should be present in final step")
 890 |                 return False
 891 | 
 892 |             self.logger.info("    ✅ Context-aware file embedding test completed successfully")
 893 |             return True
 894 | 
 895 |         except Exception as e:
 896 |             self.logger.error(f"Context-aware file embedding test failed: {e}")
 897 |             return False
 898 | 
 899 |     def _test_analysis_types(self) -> bool:
 900 |         """Test different analysis types (architecture, performance, security, quality)"""
 901 |         try:
 902 |             self.logger.info("  1.6: Testing different analysis types")
 903 | 
 904 |             # Test security analysis
 905 |             self.logger.info("    1.6.1: Security analysis")
 906 |             response_security, _ = self.call_mcp_tool(
 907 |                 "analyze",
 908 |                 {
 909 |                     "step": "Conducting security analysis of authentication and data handling patterns",
 910 |                     "step_number": 1,
 911 |                     "total_steps": 1,
 912 |                     "next_step_required": False,
 913 |                     "findings": "Security analysis reveals: password hashing implementation, input validation patterns, SQL injection prevention via parameterized queries, but missing input sanitization in some areas and weak default secret key handling.",
 914 |                     "files_checked": [self.main_service_file, self.utils_file],
 915 |                     "relevant_files": [self.main_service_file, self.utils_file],
 916 |                     "relevant_context": ["hash_password", "validate_email", "sanitize_input"],
 917 |                     "issues_found": [
 918 |                         {"severity": "critical", "description": "Weak default secret key in production detection"},
 919 |                         {"severity": "medium", "description": "Input sanitization not consistently applied"},
 920 |                     ],
 921 |                     "confidence": "high",
 922 |                     "prompt": "Analyze security patterns and vulnerabilities",
 923 |                     "analysis_type": "security",
 924 |                     "model": "flash",
 925 |                 },
 926 |             )
 927 | 
 928 |             if not response_security:
 929 |                 self.logger.error("Failed security analysis test")
 930 |                 return False
 931 | 
 932 |             response_security_data = self._parse_analyze_response(response_security)
 933 |             if not response_security_data:
 934 |                 return False
 935 | 
 936 |             # Check that security analysis was processed
 937 |             issues = response_security_data.get("complete_analysis", {}).get("issues_found", [])
 938 |             critical_issues = [issue for issue in issues if issue.get("severity") == "critical"]
 939 | 
 940 |             if not critical_issues:
 941 |                 self.logger.warning("Security analysis should have identified critical security issues")
 942 |             else:
 943 |                 self.logger.info("    ✅ Security analysis identified critical issues")
 944 | 
 945 |             # Test quality analysis
 946 |             self.logger.info("    1.6.2: Quality analysis")
 947 |             response_quality, _ = self.call_mcp_tool(
 948 |                 "analyze",
 949 |                 {
 950 |                     "step": "Conducting code quality analysis focusing on maintainability and best practices",
 951 |                     "step_number": 1,
 952 |                     "total_steps": 1,
 953 |                     "next_step_required": False,
 954 |                     "findings": "Code quality analysis shows: good use of type hints, proper error handling in some areas but missing in others, mixed separation of concerns, and opportunities for better abstraction.",
 955 |                     "files_checked": [self.models_file, self.utils_file],
 956 |                     "relevant_files": [self.models_file, self.utils_file],
 957 |                     "relevant_context": ["User.to_dict", "ValidationError", "PerformanceTimer"],
 958 |                     "issues_found": [
 959 |                         {"severity": "medium", "description": "Serialization logic mixed with model classes"},
 960 |                         {"severity": "low", "description": "Inconsistent error handling patterns"},
 961 |                     ],
 962 |                     "confidence": "high",
 963 |                     "prompt": "Analyze code quality and maintainability patterns",
 964 |                     "analysis_type": "quality",
 965 |                     "model": "flash",
 966 |                 },
 967 |             )
 968 | 
 969 |             if not response_quality:
 970 |                 self.logger.error("Failed quality analysis test")
 971 |                 return False
 972 | 
 973 |             response_quality_data = self._parse_analyze_response(response_quality)
 974 |             if not response_quality_data:
 975 |                 return False
 976 | 
 977 |             # Verify quality analysis was processed
 978 |             quality_context = response_quality_data.get("complete_analysis", {}).get("relevant_context", [])
 979 |             if not any("User" in ctx for ctx in quality_context):
 980 |                 self.logger.warning("Quality analysis should have analyzed model classes")
 981 |             else:
 982 |                 self.logger.info("    ✅ Quality analysis examined relevant code elements")
 983 | 
 984 |             self.logger.info("    ✅ Different analysis types test completed successfully")
 985 |             return True
 986 | 
 987 |         except Exception as e:
 988 |             self.logger.error(f"Analysis types test failed: {e}")
 989 |             return False
 990 | 
 991 |     def call_mcp_tool(self, tool_name: str, params: dict) -> tuple[Optional[str], Optional[str]]:
 992 |         """Call an MCP tool in-process - override for analyze-specific response handling"""
 993 |         # Use in-process implementation to maintain conversation memory
 994 |         response_text, _ = self.call_mcp_tool_direct(tool_name, params)
 995 | 
 996 |         if not response_text:
 997 |             return None, None
 998 | 
 999 |         # Extract continuation_id from analyze response specifically
1000 |         continuation_id = self._extract_analyze_continuation_id(response_text)
1001 | 
1002 |         return response_text, continuation_id
1003 | 
1004 |     def _extract_analyze_continuation_id(self, response_text: str) -> Optional[str]:
1005 |         """Extract continuation_id from analyze response"""
1006 |         try:
1007 |             # Parse the response
1008 |             response_data = json.loads(response_text)
1009 |             return response_data.get("continuation_id")
1010 | 
1011 |         except json.JSONDecodeError as e:
1012 |             self.logger.debug(f"Failed to parse response for analyze continuation_id: {e}")
1013 |             return None
1014 | 
1015 |     def _parse_analyze_response(self, response_text: str) -> dict:
1016 |         """Parse analyze tool JSON response"""
1017 |         try:
1018 |             # Parse the response - it should be direct JSON
1019 |             return json.loads(response_text)
1020 | 
1021 |         except json.JSONDecodeError as e:
1022 |             self.logger.error(f"Failed to parse analyze response as JSON: {e}")
1023 |             self.logger.error(f"Response text: {response_text[:500]}...")
1024 |             return {}
1025 | 
1026 |     def _validate_step_response(
1027 |         self,
1028 |         response_data: dict,
1029 |         expected_step: int,
1030 |         expected_total: int,
1031 |         expected_next_required: bool,
1032 |         expected_status: str,
1033 |     ) -> bool:
1034 |         """Validate an analyze investigation step response structure"""
1035 |         try:
1036 |             # Check status
1037 |             if response_data.get("status") != expected_status:
1038 |                 self.logger.error(f"Expected status '{expected_status}', got '{response_data.get('status')}'")
1039 |                 return False
1040 | 
1041 |             # Check step number
1042 |             if response_data.get("step_number") != expected_step:
1043 |                 self.logger.error(f"Expected step_number {expected_step}, got {response_data.get('step_number')}")
1044 |                 return False
1045 | 
1046 |             # Check total steps
1047 |             if response_data.get("total_steps") != expected_total:
1048 |                 self.logger.error(f"Expected total_steps {expected_total}, got {response_data.get('total_steps')}")
1049 |                 return False
1050 | 
1051 |             # Check next_step_required
1052 |             if response_data.get("next_step_required") != expected_next_required:
1053 |                 self.logger.error(
1054 |                     f"Expected next_step_required {expected_next_required}, got {response_data.get('next_step_required')}"
1055 |                 )
1056 |                 return False
1057 | 
1058 |             # Check analysis_status exists
1059 |             if "analysis_status" not in response_data:
1060 |                 self.logger.error("Missing analysis_status in response")
1061 |                 return False
1062 | 
1063 |             # Check next_steps guidance
1064 |             if not response_data.get("next_steps"):
1065 |                 self.logger.error("Missing next_steps guidance in response")
1066 |                 return False
1067 | 
1068 |             return True
1069 | 
1070 |         except Exception as e:
1071 |             self.logger.error(f"Error validating step response: {e}")
1072 |             return False
1073 | 
```

--------------------------------------------------------------------------------
/simulator_tests/test_refactor_validation.py:
--------------------------------------------------------------------------------

```python
   1 | #!/usr/bin/env python3
   2 | """
   3 | Refactor Tool Validation Test
   4 | 
   5 | Tests the refactor tool's capabilities using the new workflow architecture.
   6 | This validates the step-by-step refactoring analysis pattern with expert validation.
   7 | """
   8 | 
   9 | import json
  10 | from typing import Optional
  11 | 
  12 | from .conversation_base_test import ConversationBaseTest
  13 | 
  14 | 
  15 | class RefactorValidationTest(ConversationBaseTest):
  16 |     """Test refactor tool with new workflow architecture"""
  17 | 
  18 |     @property
  19 |     def test_name(self) -> str:
  20 |         return "refactor_validation"
  21 | 
  22 |     @property
  23 |     def test_description(self) -> str:
  24 |         return "Refactor tool validation with new workflow architecture"
  25 | 
  26 |     def run_test(self) -> bool:
  27 |         """Test refactor tool capabilities"""
  28 |         # Set up the test environment
  29 |         self.setUp()
  30 | 
  31 |         try:
  32 |             self.logger.info("Test: Refactor tool validation (new architecture)")
  33 | 
  34 |             # Create test files with refactoring opportunities
  35 |             self._create_refactoring_test_code()
  36 | 
  37 |             # Test 1: Single refactoring analysis session with multiple steps
  38 |             if not self._test_single_refactoring_session():
  39 |                 return False
  40 | 
  41 |             # Test 2: Refactoring analysis requiring refocus
  42 |             if not self._test_refactoring_refocus_flow():
  43 |                 return False
  44 | 
  45 |             # Test 3: Complete refactoring analysis with expert analysis
  46 |             if not self._test_complete_refactoring_with_analysis():
  47 |                 return False
  48 | 
  49 |             # Test 4: Certain confidence with complete refactor_result_confidence
  50 |             if not self._test_certain_confidence_complete_refactoring():
  51 |                 return False
  52 | 
  53 |             # Test 5: Context-aware file embedding for refactoring
  54 |             if not self._test_context_aware_refactoring_file_embedding():
  55 |                 return False
  56 | 
  57 |             # Test 6: Different refactor types
  58 |             if not self._test_different_refactor_types():
  59 |                 return False
  60 | 
  61 |             self.logger.info("  ✅ All refactor validation tests passed")
  62 |             return True
  63 | 
  64 |         except Exception as e:
  65 |             self.logger.error(f"Refactor validation test failed: {e}")
  66 |             return False
  67 | 
  68 |     def _create_refactoring_test_code(self):
  69 |         """Create test files with various refactoring opportunities"""
  70 |         # Create a Python file with obvious code smells and decomposition opportunities
  71 |         refactor_code = """#!/usr/bin/env python3
  72 | import json
  73 | import os
  74 | from datetime import datetime
  75 | 
  76 | # Code smell: Large class with multiple responsibilities
  77 | class DataProcessorManager:
  78 |     def __init__(self, config_file):
  79 |         self.config = self._load_config(config_file)
  80 |         self.processed_count = 0
  81 |         self.error_count = 0
  82 |         self.log_file = "processing.log"
  83 | 
  84 |     def _load_config(self, config_file):
  85 |         \"\"\"Load configuration from file\"\"\"
  86 |         with open(config_file, 'r') as f:
  87 |             return json.load(f)
  88 | 
  89 |     # Code smell: Long method doing too many things (decompose opportunity)
  90 |     def process_user_data(self, user_data, validation_rules, output_format):
  91 |         \"\"\"Process user data with validation and formatting\"\"\"
  92 |         # Validation logic
  93 |         if not user_data:
  94 |             print("Error: No user data")  # Code smell: print instead of logging
  95 |             return None
  96 | 
  97 |         if not isinstance(user_data, dict):
  98 |             print("Error: Invalid data format")
  99 |             return None
 100 | 
 101 |         # Check required fields
 102 |         required_fields = ['name', 'email', 'age']
 103 |         for field in required_fields:
 104 |             if field not in user_data:
 105 |                 print(f"Error: Missing field {field}")
 106 |                 return None
 107 | 
 108 |         # Apply validation rules
 109 |         for rule in validation_rules:
 110 |             if rule['field'] == 'email':
 111 |                 if '@' not in user_data['email']:  # Code smell: simple validation
 112 |                     print("Error: Invalid email")
 113 |                     return None
 114 |             elif rule['field'] == 'age':
 115 |                 if user_data['age'] < 18:  # Code smell: magic number
 116 |                     print("Error: Age too young")
 117 |                     return None
 118 | 
 119 |         # Data processing
 120 |         processed_data = {}
 121 |         processed_data['full_name'] = user_data['name'].title()
 122 |         processed_data['email_domain'] = user_data['email'].split('@')[1]
 123 |         processed_data['age_category'] = 'adult' if user_data['age'] >= 18 else 'minor'
 124 | 
 125 |         # Code smell: Duplicate date formatting logic
 126 |         if output_format == 'json':
 127 |             processed_data['processed_at'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 128 |             result = json.dumps(processed_data, ensure_ascii=False)
 129 |         elif output_format == 'csv':
 130 |             processed_data['processed_at'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 131 |             result = f"{processed_data['full_name']},{processed_data['email_domain']},{processed_data['age_category']}"
 132 |         else:
 133 |             processed_data['processed_at'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 134 |             result = str(processed_data)
 135 | 
 136 |         # Logging and statistics
 137 |         self.processed_count += 1
 138 |         with open(self.log_file, 'a') as f:  # Code smell: file handling without context
 139 |             f.write(f"Processed: {user_data['name']} at {datetime.now()}\\n")
 140 | 
 141 |         return result
 142 | 
 143 |     # Code smell: Another long method (decompose opportunity)
 144 |     def batch_process_files(self, file_list, output_dir):
 145 |         \"\"\"Process multiple files in batch\"\"\"
 146 |         results = []
 147 | 
 148 |         for file_path in file_list:
 149 |             # File validation
 150 |             if not os.path.exists(file_path):
 151 |                 print(f"Error: File {file_path} not found")
 152 |                 continue
 153 | 
 154 |             if not file_path.endswith('.json'):
 155 |                 print(f"Error: File {file_path} is not JSON")
 156 |                 continue
 157 | 
 158 |             # Read and process file
 159 |             try:
 160 |                 with open(file_path, 'r') as f:
 161 |                     data = json.load(f)
 162 | 
 163 |                 # Code smell: Nested loops and complex logic
 164 |                 for user_id, user_data in data.items():
 165 |                     if isinstance(user_data, dict):
 166 |                         # Duplicate validation logic from process_user_data
 167 |                         if 'name' in user_data and 'email' in user_data:
 168 |                             if '@' in user_data['email']:
 169 |                                 # More processing...
 170 |                                 processed = {
 171 |                                     'id': user_id,
 172 |                                     'name': user_data['name'].title(),
 173 |                                     'email': user_data['email'].lower()
 174 |                                 }
 175 |                                 results.append(processed)
 176 | 
 177 |                 # Write output file
 178 |                 output_file = os.path.join(output_dir, f"processed_{os.path.basename(file_path)}")
 179 |                 with open(output_file, 'w') as f:
 180 |                     json.dump(results, f, indent=2)
 181 | 
 182 |             except Exception as e:
 183 |                 print(f"Error processing file {file_path}: {e}")
 184 |                 self.error_count += 1
 185 | 
 186 |         return results
 187 | 
 188 |     # Code smell: Method doing file I/O and business logic
 189 |     def generate_report(self):
 190 |         \"\"\"Generate processing report\"\"\"
 191 |         report_data = {
 192 |             'total_processed': self.processed_count,
 193 |             'total_errors': self.error_count,
 194 |             'success_rate': (self.processed_count / (self.processed_count + self.error_count)) * 100 if (self.processed_count + self.error_count) > 0 else 0,
 195 |             'generated_at': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 196 |         }
 197 | 
 198 |         # Write to multiple formats (code smell: duplicate logic)
 199 |         with open('report.json', 'w') as f:
 200 |             json.dump(report_data, f, indent=2)
 201 | 
 202 |         with open('report.txt', 'w') as f:
 203 |             f.write(f"Processing Report\\n")
 204 |             f.write(f"================\\n")
 205 |             f.write(f"Total Processed: {report_data['total_processed']}\\n")
 206 |             f.write(f"Total Errors: {report_data['total_errors']}\\n")
 207 |             f.write(f"Success Rate: {report_data['success_rate']:.2f}%\\n")
 208 |             f.write(f"Generated: {report_data['generated_at']}\\n")
 209 | 
 210 |         return report_data
 211 | 
 212 | # Code smell: Utility functions that could be in a separate module
 213 | def validate_email(email):
 214 |     \"\"\"Simple email validation\"\"\"
 215 |     return '@' in email and '.' in email
 216 | 
 217 | def format_name(name):
 218 |     \"\"\"Format name to title case\"\"\"
 219 |     return name.title() if name else ""
 220 | 
 221 | def calculate_age_category(age):
 222 |     \"\"\"Calculate age category\"\"\"
 223 |     if age < 18:
 224 |         return 'minor'
 225 |     elif age < 65:
 226 |         return 'adult'
 227 |     else:
 228 |         return 'senior'
 229 | """
 230 | 
 231 |         # Create test file with refactoring opportunities
 232 |         self.refactor_file = self.create_additional_test_file("data_processor_manager.py", refactor_code)
 233 |         self.logger.info(f"  ✅ Created test file with refactoring opportunities: {self.refactor_file}")
 234 | 
 235 |         # Create a smaller file for focused testing
 236 |         small_refactor_code = """#!/usr/bin/env python3
 237 | 
 238 | # Code smell: God function
 239 | def process_everything(data, config, logger):
 240 |     \"\"\"Function that does too many things\"\"\"
 241 |     # Validation
 242 |     if not data:
 243 |         print("No data")  # Should use logger
 244 |         return None
 245 | 
 246 |     # Processing
 247 |     result = []
 248 |     for item in data:
 249 |         if item > 5:  # Magic number
 250 |             result.append(item * 2)  # Magic number
 251 | 
 252 |     # Logging
 253 |     print(f"Processed {len(result)} items")
 254 | 
 255 |     # File I/O
 256 |     with open("output.txt", "w") as f:
 257 |         f.write(str(result))
 258 | 
 259 |     return result
 260 | 
 261 | # Modernization opportunity: Could use dataclass
 262 | class UserData:
 263 |     def __init__(self, name, email, age):
 264 |         self.name = name
 265 |         self.email = email
 266 |         self.age = age
 267 | 
 268 |     def to_dict(self):
 269 |         return {
 270 |             'name': self.name,
 271 |             'email': self.email,
 272 |             'age': self.age
 273 |         }
 274 | """
 275 | 
 276 |         self.small_refactor_file = self.create_additional_test_file("simple_processor.py", small_refactor_code)
 277 |         self.logger.info(f"  ✅ Created small test file: {self.small_refactor_file}")
 278 | 
 279 |     def _test_single_refactoring_session(self) -> bool:
 280 |         """Test a complete refactoring analysis session with multiple steps"""
 281 |         try:
 282 |             self.logger.info("  1.1: Testing single refactoring analysis session")
 283 | 
 284 |             # Step 1: Start refactoring analysis
 285 |             self.logger.info("    1.1.1: Step 1 - Initial refactoring investigation")
 286 |             response1, continuation_id = self.call_mcp_tool(
 287 |                 "refactor",
 288 |                 {
 289 |                     "step": "Starting refactoring analysis of the data processor code. Let me examine the code structure and identify opportunities for decomposition, code smell fixes, and modernization.",
 290 |                     "step_number": 1,
 291 |                     "total_steps": 4,
 292 |                     "next_step_required": True,
 293 |                     "findings": "Initial scan shows a large DataProcessorManager class with multiple responsibilities. The class handles configuration, data processing, file I/O, and logging - violating single responsibility principle.",
 294 |                     "files_checked": [self.refactor_file],
 295 |                     "relevant_files": [self.refactor_file],
 296 |                     "confidence": "incomplete",
 297 |                     "refactor_type": "codesmells",
 298 |                     "focus_areas": ["maintainability", "readability"],
 299 |                 },
 300 |             )
 301 | 
 302 |             if not response1 or not continuation_id:
 303 |                 self.logger.error("Failed to get initial refactoring response")
 304 |                 return False
 305 | 
 306 |             # Parse and validate JSON response
 307 |             response1_data = self._parse_refactor_response(response1)
 308 |             if not response1_data:
 309 |                 return False
 310 | 
 311 |             # Validate step 1 response structure - expect pause_for_refactoring_analysis for next_step_required=True
 312 |             if not self._validate_refactoring_step_response(
 313 |                 response1_data, 1, 4, True, "pause_for_refactoring_analysis"
 314 |             ):
 315 |                 return False
 316 | 
 317 |             self.logger.info(f"    ✅ Step 1 successful, continuation_id: {continuation_id}")
 318 | 
 319 |             # Step 2: Deeper analysis
 320 |             self.logger.info("    1.1.2: Step 2 - Detailed code analysis")
 321 |             response2, _ = self.call_mcp_tool(
 322 |                 "refactor",
 323 |                 {
 324 |                     "step": "Now examining the specific methods and identifying concrete refactoring opportunities. Found multiple code smells and decomposition needs.",
 325 |                     "step_number": 2,
 326 |                     "total_steps": 4,
 327 |                     "next_step_required": True,
 328 |                     "findings": "Identified several major issues: 1) process_user_data method is 50+ lines doing validation, processing, and I/O. 2) Duplicate validation logic. 3) Magic numbers (18 for age). 4) print statements instead of proper logging. 5) File handling without proper context management.",
 329 |                     "files_checked": [self.refactor_file],
 330 |                     "relevant_files": [self.refactor_file],
 331 |                     "relevant_context": [
 332 |                         "DataProcessorManager.process_user_data",
 333 |                         "DataProcessorManager.batch_process_files",
 334 |                     ],
 335 |                     "issues_found": [
 336 |                         {
 337 |                             "type": "codesmells",
 338 |                             "severity": "high",
 339 |                             "description": "Long method: process_user_data does too many things",
 340 |                         },
 341 |                         {
 342 |                             "type": "codesmells",
 343 |                             "severity": "medium",
 344 |                             "description": "Magic numbers: age validation uses hardcoded 18",
 345 |                         },
 346 |                         {
 347 |                             "type": "codesmells",
 348 |                             "severity": "medium",
 349 |                             "description": "Duplicate validation logic in multiple places",
 350 |                         },
 351 |                     ],
 352 |                     "confidence": "partial",
 353 |                     "continuation_id": continuation_id,
 354 |                 },
 355 |             )
 356 | 
 357 |             if not response2:
 358 |                 self.logger.error("Failed to continue refactoring analysis to step 2")
 359 |                 return False
 360 | 
 361 |             response2_data = self._parse_refactor_response(response2)
 362 |             if not self._validate_refactoring_step_response(
 363 |                 response2_data, 2, 4, True, "pause_for_refactoring_analysis"
 364 |             ):
 365 |                 return False
 366 | 
 367 |             # Check refactoring status tracking
 368 |             refactoring_status = response2_data.get("refactoring_status", {})
 369 |             if refactoring_status.get("files_checked", 0) < 1:
 370 |                 self.logger.error("Files checked count not properly tracked")
 371 |                 return False
 372 | 
 373 |             opportunities_by_type = refactoring_status.get("opportunities_by_type", {})
 374 |             if "codesmells" not in opportunities_by_type:
 375 |                 self.logger.error("Code smells not properly tracked in opportunities")
 376 |                 return False
 377 | 
 378 |             if refactoring_status.get("refactor_confidence") != "partial":
 379 |                 self.logger.error("Refactor confidence not properly tracked")
 380 |                 return False
 381 | 
 382 |             self.logger.info("    ✅ Step 2 successful with proper refactoring tracking")
 383 | 
 384 |             # Store continuation_id for next test
 385 |             self.refactoring_continuation_id = continuation_id
 386 |             return True
 387 | 
 388 |         except Exception as e:
 389 |             self.logger.error(f"Single refactoring session test failed: {e}")
 390 |             return False
 391 | 
 392 |     def _test_refactoring_refocus_flow(self) -> bool:
 393 |         """Test refactoring analysis that shifts focus mid-investigation"""
 394 |         try:
 395 |             self.logger.info("  1.2: Testing refactoring analysis refocus workflow")
 396 | 
 397 |             # Start a new refactoring analysis for testing refocus behaviour
 398 |             self.logger.info("    1.2.1: Start refactoring analysis for refocus test")
 399 |             response1, continuation_id = self.call_mcp_tool(
 400 |                 "refactor",
 401 |                 {
 402 |                     "step": "Analyzing code for decomposition opportunities",
 403 |                     "step_number": 1,
 404 |                     "total_steps": 4,
 405 |                     "next_step_required": True,
 406 |                     "findings": "Initial focus on class-level decomposition",
 407 |                     "files_checked": [self.small_refactor_file],
 408 |                     "relevant_files": [self.small_refactor_file],
 409 |                     "confidence": "incomplete",
 410 |                     "refactor_type": "decompose",
 411 |                 },
 412 |             )
 413 | 
 414 |             if not response1 or not continuation_id:
 415 |                 self.logger.error("Failed to start refocus test refactoring analysis")
 416 |                 return False
 417 | 
 418 |             # Step 2: Wrong direction
 419 |             self.logger.info("    1.2.2: Step 2 - Wrong refactoring focus")
 420 |             response2, _ = self.call_mcp_tool(
 421 |                 "refactor",
 422 |                 {
 423 |                     "step": "Focusing on class decomposition strategies",
 424 |                     "step_number": 2,
 425 |                     "total_steps": 4,
 426 |                     "next_step_required": True,
 427 |                     "findings": "Class structure seems reasonable, might be looking in wrong direction",
 428 |                     "files_checked": [self.small_refactor_file],
 429 |                     "relevant_files": [],
 430 |                     "confidence": "incomplete",
 431 |                     "continuation_id": continuation_id,
 432 |                 },
 433 |             )
 434 | 
 435 |             if not response2:
 436 |                 self.logger.error("Failed to continue to step 2")
 437 |                 return False
 438 | 
 439 |             # Step 3: Backtrack from step 2
 440 |             self.logger.info("    1.2.3: Step 3 - Refocus on function decomposition")
 441 |             response3, _ = self.call_mcp_tool(
 442 |                 "refactor",
 443 |                 {
 444 |                     "step": "Refocusing - the real decomposition opportunity is the god function process_everything. Let me analyze function-level refactoring instead.",
 445 |                     "step_number": 3,
 446 |                     "total_steps": 4,
 447 |                     "next_step_required": True,
 448 |                     "findings": "Found the main decomposition opportunity: process_everything function does validation, processing, logging, and file I/O. Should be split into separate functions with single responsibilities.",
 449 |                     "files_checked": [self.small_refactor_file],
 450 |                     "relevant_files": [self.small_refactor_file],
 451 |                     "relevant_context": ["process_everything"],
 452 |                     "issues_found": [
 453 |                         {
 454 |                             "type": "decompose",
 455 |                             "severity": "high",
 456 |                             "description": "God function: process_everything has multiple responsibilities",
 457 |                         },
 458 |                         {
 459 |                             "type": "codesmells",
 460 |                             "severity": "medium",
 461 |                             "description": "Magic numbers in processing logic",
 462 |                         },
 463 |                     ],
 464 |                     "confidence": "partial",
 465 |                     "continuation_id": continuation_id,
 466 |                 },
 467 |             )
 468 | 
 469 |             if not response3:
 470 |                 self.logger.error("Failed to refocus")
 471 |                 return False
 472 | 
 473 |             response3_data = self._parse_refactor_response(response3)
 474 |             if not self._validate_refactoring_step_response(
 475 |                 response3_data, 3, 4, True, "pause_for_refactoring_analysis"
 476 |             ):
 477 |                 return False
 478 | 
 479 |             self.logger.info("    ✅ Refocus working correctly for refactoring analysis")
 480 |             return True
 481 | 
 482 |         except Exception as e:
 483 |             self.logger.error(f"Refocusing test failed: {e}")
 484 |             return False
 485 | 
 486 |     def _test_complete_refactoring_with_analysis(self) -> bool:
 487 |         """Test complete refactoring analysis ending with expert analysis"""
 488 |         try:
 489 |             self.logger.info("  1.3: Testing complete refactoring analysis with expert analysis")
 490 | 
 491 |             # Use the continuation from first test
 492 |             continuation_id = getattr(self, "refactoring_continuation_id", None)
 493 |             if not continuation_id:
 494 |                 # Start fresh if no continuation available
 495 |                 self.logger.info("    1.3.0: Starting fresh refactoring analysis")
 496 |                 response0, continuation_id = self.call_mcp_tool(
 497 |                     "refactor",
 498 |                     {
 499 |                         "step": "Analyzing the data processor for comprehensive refactoring opportunities",
 500 |                         "step_number": 1,
 501 |                         "total_steps": 2,
 502 |                         "next_step_required": True,
 503 |                         "findings": "Found multiple refactoring opportunities in DataProcessorManager",
 504 |                         "files_checked": [self.refactor_file],
 505 |                         "relevant_files": [self.refactor_file],
 506 |                         "relevant_context": ["DataProcessorManager.process_user_data"],
 507 |                         "confidence": "partial",
 508 |                         "refactor_type": "codesmells",
 509 |                     },
 510 |                 )
 511 |                 if not response0 or not continuation_id:
 512 |                     self.logger.error("Failed to start fresh refactoring analysis")
 513 |                     return False
 514 | 
 515 |             # Final step - trigger expert analysis
 516 |             self.logger.info("    1.3.1: Final step - complete refactoring analysis")
 517 |             response_final, _ = self.call_mcp_tool(
 518 |                 "refactor",
 519 |                 {
 520 |                     "step": "Refactoring analysis complete. Identified comprehensive opportunities for code smell fixes, decomposition, and modernization across the DataProcessorManager class.",
 521 |                     "step_number": 2,
 522 |                     "total_steps": 2,
 523 |                     "next_step_required": False,  # Final step - triggers expert analysis
 524 |                     "findings": "Complete analysis shows: 1) Large class violating SRP, 2) Long methods needing decomposition, 3) Duplicate validation logic, 4) Magic numbers, 5) Poor error handling with print statements, 6) File I/O mixed with business logic. All major refactoring opportunities identified with specific line locations.",
 525 |                     "files_checked": [self.refactor_file],
 526 |                     "relevant_files": [self.refactor_file],
 527 |                     "relevant_context": [
 528 |                         "DataProcessorManager.process_user_data",
 529 |                         "DataProcessorManager.batch_process_files",
 530 |                         "DataProcessorManager.generate_report",
 531 |                     ],
 532 |                     "issues_found": [
 533 |                         {
 534 |                             "type": "decompose",
 535 |                             "severity": "critical",
 536 |                             "description": "Large class with multiple responsibilities",
 537 |                         },
 538 |                         {
 539 |                             "type": "codesmells",
 540 |                             "severity": "high",
 541 |                             "description": "Long method: process_user_data (50+ lines)",
 542 |                         },
 543 |                         {"type": "codesmells", "severity": "high", "description": "Duplicate validation logic"},
 544 |                         {"type": "codesmells", "severity": "medium", "description": "Magic numbers in age validation"},
 545 |                         {
 546 |                             "type": "modernize",
 547 |                             "severity": "medium",
 548 |                             "description": "Use proper logging instead of print statements",
 549 |                         },
 550 |                     ],
 551 |                     "confidence": "partial",  # Use partial to trigger expert analysis
 552 |                     "continuation_id": continuation_id,
 553 |                     "model": "flash",  # Use flash for expert analysis
 554 |                 },
 555 |             )
 556 | 
 557 |             if not response_final:
 558 |                 self.logger.error("Failed to complete refactoring analysis")
 559 |                 return False
 560 | 
 561 |             response_final_data = self._parse_refactor_response(response_final)
 562 |             if not response_final_data:
 563 |                 return False
 564 | 
 565 |             # Validate final response structure - expect calling_expert_analysis or files_required_to_continue
 566 |             expected_statuses = ["calling_expert_analysis", "files_required_to_continue"]
 567 |             actual_status = response_final_data.get("status")
 568 |             if actual_status not in expected_statuses:
 569 |                 self.logger.error(f"Expected status to be one of {expected_statuses}, got '{actual_status}'")
 570 |                 return False
 571 | 
 572 |             if not response_final_data.get("refactoring_complete"):
 573 |                 self.logger.error("Expected refactoring_complete=true for final step")
 574 |                 return False
 575 | 
 576 |             # Check for expert analysis or content (depending on status)
 577 |             if actual_status == "calling_expert_analysis":
 578 |                 if "expert_analysis" not in response_final_data:
 579 |                     self.logger.error("Missing expert_analysis in final response")
 580 |                     return False
 581 |                 expert_analysis = response_final_data.get("expert_analysis", {})
 582 |                 analysis_content = json.dumps(expert_analysis, ensure_ascii=False).lower()
 583 |             elif actual_status == "files_required_to_continue":
 584 |                 # For files_required_to_continue, analysis is in content field
 585 |                 if "content" not in response_final_data:
 586 |                     self.logger.error("Missing content in files_required_to_continue response")
 587 |                     return False
 588 |                 expert_analysis = {"content": response_final_data.get("content", "")}
 589 |                 analysis_content = response_final_data.get("content", "").lower()
 590 |             else:
 591 |                 self.logger.error(f"Unexpected status: {actual_status}")
 592 |                 return False
 593 | 
 594 |             # Check for expected analysis content (checking common patterns)
 595 |             analysis_text = analysis_content
 596 | 
 597 |             # Look for refactoring identification
 598 |             refactor_indicators = ["refactor", "decompose", "code smell", "method", "class", "responsibility"]
 599 |             found_indicators = sum(1 for indicator in refactor_indicators if indicator in analysis_text)
 600 | 
 601 |             if found_indicators >= 3:
 602 |                 self.logger.info("    ✅ Expert analysis identified refactoring opportunities correctly")
 603 |             else:
 604 |                 self.logger.warning(
 605 |                     f"    ⚠️ Expert analysis may not have fully identified refactoring opportunities (found {found_indicators}/6 indicators)"
 606 |                 )
 607 | 
 608 |             # Check complete refactoring summary
 609 |             if "complete_refactoring" not in response_final_data:
 610 |                 self.logger.error("Missing complete_refactoring in final response")
 611 |                 return False
 612 | 
 613 |             complete_refactoring = response_final_data["complete_refactoring"]
 614 |             if not complete_refactoring.get("relevant_context"):
 615 |                 self.logger.error("Missing relevant context in complete refactoring")
 616 |                 return False
 617 | 
 618 |             if "DataProcessorManager.process_user_data" not in complete_refactoring["relevant_context"]:
 619 |                 self.logger.error("Expected method not found in refactoring summary")
 620 |                 return False
 621 | 
 622 |             self.logger.info("    ✅ Complete refactoring analysis with expert analysis successful")
 623 |             return True
 624 | 
 625 |         except Exception as e:
 626 |             self.logger.error(f"Complete refactoring analysis test failed: {e}")
 627 |             return False
 628 | 
 629 |     def _test_certain_confidence_complete_refactoring(self) -> bool:
 630 |         """Test complete confidence - should skip expert analysis"""
 631 |         try:
 632 |             self.logger.info("  1.4: Testing complete confidence behavior")
 633 | 
 634 |             # Test complete confidence - should skip expert analysis
 635 |             self.logger.info("    1.4.1: Complete confidence refactoring")
 636 |             response_certain, _ = self.call_mcp_tool(
 637 |                 "refactor",
 638 |                 {
 639 |                     "step": "I have completed comprehensive refactoring analysis with 100% certainty: identified all major opportunities including decomposition, code smells, and modernization.",
 640 |                     "step_number": 1,
 641 |                     "total_steps": 1,
 642 |                     "next_step_required": False,  # Final step
 643 |                     "findings": "Complete refactoring analysis: 1) DataProcessorManager class needs decomposition into separate responsibilities, 2) process_user_data method needs breaking into validation, processing, and formatting functions, 3) Replace print statements with proper logging, 4) Extract magic numbers to constants, 5) Use dataclasses for modern Python patterns.",
 644 |                     "files_checked": [self.small_refactor_file],
 645 |                     "relevant_files": [self.small_refactor_file],
 646 |                     "relevant_context": ["process_everything", "UserData"],
 647 |                     "issues_found": [
 648 |                         {"type": "decompose", "severity": "high", "description": "God function needs decomposition"},
 649 |                         {"type": "modernize", "severity": "medium", "description": "Use dataclass for UserData"},
 650 |                         {"type": "codesmells", "severity": "medium", "description": "Replace print with logging"},
 651 |                     ],
 652 |                     "confidence": "complete",  # Complete confidence should skip expert analysis
 653 |                     "refactor_type": "codesmells",
 654 |                     "model": "flash",
 655 |                 },
 656 |             )
 657 | 
 658 |             if not response_certain:
 659 |                 self.logger.error("Failed to test certain confidence with complete refactoring")
 660 |                 return False
 661 | 
 662 |             response_certain_data = self._parse_refactor_response(response_certain)
 663 |             if not response_certain_data:
 664 |                 return False
 665 | 
 666 |             # Validate certain confidence response - should skip expert analysis
 667 |             if response_certain_data.get("status") != "refactoring_analysis_complete_ready_for_implementation":
 668 |                 self.logger.error(
 669 |                     f"Expected status 'refactoring_analysis_complete_ready_for_implementation', got '{response_certain_data.get('status')}'"
 670 |                 )
 671 |                 return False
 672 | 
 673 |             if not response_certain_data.get("skip_expert_analysis"):
 674 |                 self.logger.error("Expected skip_expert_analysis=true for complete confidence")
 675 |                 return False
 676 | 
 677 |             expert_analysis = response_certain_data.get("expert_analysis", {})
 678 |             if expert_analysis.get("status") != "skipped_due_to_complete_refactoring_confidence":
 679 |                 self.logger.error("Expert analysis should be skipped for complete confidence")
 680 |                 return False
 681 | 
 682 |             self.logger.info("    ✅ Complete confidence behavior working correctly")
 683 |             return True
 684 | 
 685 |         except Exception as e:
 686 |             self.logger.error(f"Complete confidence test failed: {e}")
 687 |             return False
 688 | 
 689 |     def _test_context_aware_refactoring_file_embedding(self) -> bool:
 690 |         """Test context-aware file embedding optimization for refactoring workflow"""
 691 |         try:
 692 |             self.logger.info("  1.5: Testing context-aware file embedding for refactoring")
 693 | 
 694 |             # Create multiple test files for context testing
 695 |             utils_content = """#!/usr/bin/env python3
 696 | # Utility functions with refactoring opportunities
 697 | 
 698 | def calculate_total(items):
 699 |     \"\"\"Calculate total with magic numbers\"\"\"
 700 |     total = 0
 701 |     for item in items:
 702 |         if item > 10:  # Magic number
 703 |             total += item * 1.1  # Magic number for tax
 704 |     return total
 705 | 
 706 | def format_output(data, format_type):
 707 |     \"\"\"Format output - duplicate logic\"\"\"
 708 |     if format_type == 'json':
 709 |         import json
 710 |         return json.dumps(data, ensure_ascii=False)
 711 |     elif format_type == 'csv':
 712 |         return ','.join(str(v) for v in data.values())
 713 |     else:
 714 |         return str(data)
 715 | """
 716 | 
 717 |             helpers_content = """#!/usr/bin/env python3
 718 | # Helper functions that could be modernized
 719 | 
 720 | class DataContainer:
 721 |     \"\"\"Simple data container - could use dataclass\"\"\"
 722 |     def __init__(self, name, value, category):
 723 |         self.name = name
 724 |         self.value = value
 725 |         self.category = category
 726 | 
 727 |     def to_dict(self):
 728 |         return {
 729 |             'name': self.name,
 730 |             'value': self.value,
 731 |             'category': self.category
 732 |         }
 733 | """
 734 | 
 735 |             # Create test files
 736 |             utils_file = self.create_additional_test_file("utils.py", utils_content)
 737 |             helpers_file = self.create_additional_test_file("helpers.py", helpers_content)
 738 | 
 739 |             # Test 1: New conversation, intermediate step - should only reference files
 740 |             self.logger.info("    1.5.1: New conversation intermediate step (should reference only)")
 741 |             response1, continuation_id = self.call_mcp_tool(
 742 |                 "refactor",
 743 |                 {
 744 |                     "step": "Starting refactoring analysis of utility modules",
 745 |                     "step_number": 1,
 746 |                     "total_steps": 3,
 747 |                     "next_step_required": True,  # Intermediate step
 748 |                     "findings": "Initial analysis of utility and helper modules for refactoring opportunities",
 749 |                     "files_checked": [utils_file, helpers_file],
 750 |                     "relevant_files": [utils_file],  # This should be referenced, not embedded
 751 |                     "relevant_context": ["calculate_total"],
 752 |                     "confidence": "incomplete",
 753 |                     "refactor_type": "codesmells",
 754 |                     "model": "flash",
 755 |                 },
 756 |             )
 757 | 
 758 |             if not response1 or not continuation_id:
 759 |                 self.logger.error("Failed to start context-aware file embedding test")
 760 |                 return False
 761 | 
 762 |             response1_data = self._parse_refactor_response(response1)
 763 |             if not response1_data:
 764 |                 return False
 765 | 
 766 |             # Check file context - should be reference_only for intermediate step
 767 |             file_context = response1_data.get("file_context", {})
 768 |             if file_context.get("type") != "reference_only":
 769 |                 self.logger.error(f"Expected reference_only file context, got: {file_context.get('type')}")
 770 |                 return False
 771 | 
 772 |             if "Files referenced but not embedded" not in file_context.get("context_optimization", ""):
 773 |                 self.logger.error("Expected context optimization message for reference_only")
 774 |                 return False
 775 | 
 776 |             self.logger.info("    ✅ Intermediate step correctly uses reference_only file context")
 777 | 
 778 |             # Test 2: Final step - should embed files for expert analysis
 779 |             self.logger.info("    1.5.2: Final step (should embed files)")
 780 |             response2, _ = self.call_mcp_tool(
 781 |                 "refactor",
 782 |                 {
 783 |                     "step": "Refactoring analysis complete - identified all opportunities",
 784 |                     "step_number": 3,
 785 |                     "total_steps": 3,
 786 |                     "next_step_required": False,  # Final step - should embed files
 787 |                     "continuation_id": continuation_id,
 788 |                     "findings": "Complete analysis: Found magic numbers in calculate_total, duplicate formatting logic, and modernization opportunity with DataContainer class that could use dataclass.",
 789 |                     "files_checked": [utils_file, helpers_file],
 790 |                     "relevant_files": [utils_file, helpers_file],  # Should be fully embedded
 791 |                     "relevant_context": ["calculate_total", "format_output", "DataContainer"],
 792 |                     "issues_found": [
 793 |                         {"type": "codesmells", "severity": "medium", "description": "Magic numbers in calculate_total"},
 794 |                         {"type": "modernize", "severity": "low", "description": "DataContainer could use dataclass"},
 795 |                         {"type": "codesmells", "severity": "low", "description": "Duplicate formatting logic"},
 796 |                     ],
 797 |                     "confidence": "partial",  # Use partial to trigger expert analysis
 798 |                     "model": "flash",
 799 |                 },
 800 |             )
 801 | 
 802 |             if not response2:
 803 |                 self.logger.error("Failed to complete to final step")
 804 |                 return False
 805 | 
 806 |             response2_data = self._parse_refactor_response(response2)
 807 |             if not response2_data:
 808 |                 return False
 809 | 
 810 |             # Check file context - should be fully_embedded for final step
 811 |             file_context2 = response2_data.get("file_context", {})
 812 |             if file_context2.get("type") != "fully_embedded":
 813 |                 self.logger.error(
 814 |                     f"Expected fully_embedded file context for final step, got: {file_context2.get('type')}"
 815 |                 )
 816 |                 return False
 817 | 
 818 |             if "Full file content embedded for expert analysis" not in file_context2.get("context_optimization", ""):
 819 |                 self.logger.error("Expected expert analysis optimization message for fully_embedded")
 820 |                 return False
 821 | 
 822 |             self.logger.info("    ✅ Final step correctly uses fully_embedded file context")
 823 | 
 824 |             # Verify expert analysis was called for final step (or files_required_to_continue)
 825 |             expected_statuses = ["calling_expert_analysis", "files_required_to_continue"]
 826 |             actual_status = response2_data.get("status")
 827 |             if actual_status not in expected_statuses:
 828 |                 self.logger.error(f"Expected one of {expected_statuses}, got: {actual_status}")
 829 |                 return False
 830 | 
 831 |             # Handle expert analysis based on status
 832 |             if actual_status == "calling_expert_analysis" and "expert_analysis" not in response2_data:
 833 |                 self.logger.error("Expert analysis should be present in final step with calling_expert_analysis")
 834 |                 return False
 835 | 
 836 |             self.logger.info("    ✅ Context-aware file embedding test for refactoring completed successfully")
 837 |             return True
 838 | 
 839 |         except Exception as e:
 840 |             self.logger.error(f"Context-aware refactoring file embedding test failed: {e}")
 841 |             return False
 842 | 
 843 |     def _test_different_refactor_types(self) -> bool:
 844 |         """Test different refactor types (decompose, modernize, organization)"""
 845 |         try:
 846 |             self.logger.info("  1.6: Testing different refactor types")
 847 | 
 848 |             # Test decompose type
 849 |             self.logger.info("    1.6.1: Testing decompose refactor type")
 850 |             response_decompose, _ = self.call_mcp_tool(
 851 |                 "refactor",
 852 |                 {
 853 |                     "step": "Analyzing code for decomposition opportunities in large functions and classes",
 854 |                     "step_number": 1,
 855 |                     "total_steps": 1,
 856 |                     "next_step_required": False,
 857 |                     "findings": "Found large DataProcessorManager class that violates single responsibility principle and long process_user_data method that needs decomposition.",
 858 |                     "files_checked": [self.refactor_file],
 859 |                     "relevant_files": [self.refactor_file],
 860 |                     "relevant_context": ["DataProcessorManager", "DataProcessorManager.process_user_data"],
 861 |                     "issues_found": [
 862 |                         {
 863 |                             "type": "decompose",
 864 |                             "severity": "critical",
 865 |                             "description": "Large class with multiple responsibilities",
 866 |                         },
 867 |                         {
 868 |                             "type": "decompose",
 869 |                             "severity": "high",
 870 |                             "description": "Long method doing validation, processing, and I/O",
 871 |                         },
 872 |                     ],
 873 |                     "confidence": "complete",
 874 |                     "refactor_type": "decompose",
 875 |                     "model": "flash",
 876 |                 },
 877 |             )
 878 | 
 879 |             if not response_decompose:
 880 |                 self.logger.error("Failed to test decompose refactor type")
 881 |                 return False
 882 | 
 883 |             response_decompose_data = self._parse_refactor_response(response_decompose)
 884 | 
 885 |             # Check that decompose type is properly tracked
 886 |             refactoring_status = response_decompose_data.get("refactoring_status", {})
 887 |             opportunities_by_type = refactoring_status.get("opportunities_by_type", {})
 888 |             if "decompose" not in opportunities_by_type:
 889 |                 self.logger.error("Decompose opportunities not properly tracked")
 890 |                 return False
 891 | 
 892 |             self.logger.info("    ✅ Decompose refactor type working correctly")
 893 | 
 894 |             # Test modernize type
 895 |             self.logger.info("    1.6.2: Testing modernize refactor type")
 896 |             response_modernize, _ = self.call_mcp_tool(
 897 |                 "refactor",
 898 |                 {
 899 |                     "step": "Analyzing code for modernization opportunities using newer Python features",
 900 |                     "step_number": 1,
 901 |                     "total_steps": 1,
 902 |                     "next_step_required": False,
 903 |                     "findings": "Found opportunities to use dataclasses, f-strings, pathlib, and proper logging instead of print statements.",
 904 |                     "files_checked": [self.small_refactor_file],
 905 |                     "relevant_files": [self.small_refactor_file],
 906 |                     "relevant_context": ["UserData", "process_everything"],
 907 |                     "issues_found": [
 908 |                         {
 909 |                             "type": "modernize",
 910 |                             "severity": "medium",
 911 |                             "description": "UserData class could use @dataclass decorator",
 912 |                         },
 913 |                         {
 914 |                             "type": "modernize",
 915 |                             "severity": "medium",
 916 |                             "description": "Replace print statements with proper logging",
 917 |                         },
 918 |                         {"type": "modernize", "severity": "low", "description": "Use pathlib for file operations"},
 919 |                     ],
 920 |                     "confidence": "complete",
 921 |                     "refactor_type": "modernize",
 922 |                     "model": "flash",
 923 |                 },
 924 |             )
 925 | 
 926 |             if not response_modernize:
 927 |                 self.logger.error("Failed to test modernize refactor type")
 928 |                 return False
 929 | 
 930 |             response_modernize_data = self._parse_refactor_response(response_modernize)
 931 | 
 932 |             # Check that modernize type is properly tracked
 933 |             refactoring_status = response_modernize_data.get("refactoring_status", {})
 934 |             opportunities_by_type = refactoring_status.get("opportunities_by_type", {})
 935 |             if "modernize" not in opportunities_by_type:
 936 |                 self.logger.error("Modernize opportunities not properly tracked")
 937 |                 return False
 938 | 
 939 |             self.logger.info("    ✅ Modernize refactor type working correctly")
 940 | 
 941 |             self.logger.info("    ✅ Different refactor types test completed successfully")
 942 |             return True
 943 | 
 944 |         except Exception as e:
 945 |             self.logger.error(f"Different refactor types test failed: {e}")
 946 |             return False
 947 | 
 948 |     def call_mcp_tool(self, tool_name: str, params: dict) -> tuple[Optional[str], Optional[str]]:
 949 |         """Call an MCP tool in-process - override for -specific response handling"""
 950 |         # Use in-process implementation to maintain conversation memory
 951 |         response_text, _ = self.call_mcp_tool_direct(tool_name, params)
 952 | 
 953 |         if not response_text:
 954 |             return None, None
 955 | 
 956 |         # Extract continuation_id from refactor response specifically
 957 |         continuation_id = self._extract_refactor_continuation_id(response_text)
 958 | 
 959 |         return response_text, continuation_id
 960 | 
 961 |     def _extract_refactor_continuation_id(self, response_text: str) -> Optional[str]:
 962 |         """Extract continuation_id from refactor response"""
 963 |         try:
 964 |             # Parse the response
 965 |             response_data = json.loads(response_text)
 966 |             return response_data.get("continuation_id")
 967 | 
 968 |         except json.JSONDecodeError as e:
 969 |             self.logger.debug(f"Failed to parse response for refactor continuation_id: {e}")
 970 |             return None
 971 | 
 972 |     def _parse_refactor_response(self, response_text: str) -> dict:
 973 |         """Parse refactor tool JSON response"""
 974 |         try:
 975 |             # Parse the response - it should be direct JSON
 976 |             return json.loads(response_text)
 977 | 
 978 |         except json.JSONDecodeError as e:
 979 |             self.logger.error(f"Failed to parse refactor response as JSON: {e}")
 980 |             self.logger.error(f"Response text: {response_text[:500]}...")
 981 |             return {}
 982 | 
 983 |     def _validate_refactoring_step_response(
 984 |         self,
 985 |         response_data: dict,
 986 |         expected_step: int,
 987 |         expected_total: int,
 988 |         expected_next_required: bool,
 989 |         expected_status: str,
 990 |     ) -> bool:
 991 |         """Validate a refactor investigation step response structure"""
 992 |         try:
 993 |             # Check status
 994 |             if response_data.get("status") != expected_status:
 995 |                 self.logger.error(f"Expected status '{expected_status}', got '{response_data.get('status')}'")
 996 |                 return False
 997 | 
 998 |             # Check step number
 999 |             if response_data.get("step_number") != expected_step:
1000 |                 self.logger.error(f"Expected step_number {expected_step}, got {response_data.get('step_number')}")
1001 |                 return False
1002 | 
1003 |             # Check total steps
1004 |             if response_data.get("total_steps") != expected_total:
1005 |                 self.logger.error(f"Expected total_steps {expected_total}, got {response_data.get('total_steps')}")
1006 |                 return False
1007 | 
1008 |             # Check next_step_required
1009 |             if response_data.get("next_step_required") != expected_next_required:
1010 |                 self.logger.error(
1011 |                     f"Expected next_step_required {expected_next_required}, got {response_data.get('next_step_required')}"
1012 |                 )
1013 |                 return False
1014 | 
1015 |             # Check refactoring_status exists
1016 |             if "refactoring_status" not in response_data:
1017 |                 self.logger.error("Missing refactoring_status in response")
1018 |                 return False
1019 | 
1020 |             # Check next_steps guidance
1021 |             if not response_data.get("next_steps"):
1022 |                 self.logger.error("Missing next_steps guidance in response")
1023 |                 return False
1024 | 
1025 |             return True
1026 | 
1027 |         except Exception as e:
1028 |             self.logger.error(f"Error validating refactoring step response: {e}")
1029 |             return False
1030 | 
```

--------------------------------------------------------------------------------
/simulator_tests/test_precommitworkflow_validation.py:
--------------------------------------------------------------------------------

```python
   1 | #!/usr/bin/env python3
   2 | """
   3 | PrecommitWorkflow Tool Validation Test
   4 | 
   5 | Tests the precommit tool's capabilities using the new workflow architecture.
   6 | This validates that the workflow-based pre-commit validation provides step-by-step
   7 | analysis with proper investigation guidance and expert analysis integration.
   8 | """
   9 | 
  10 | import json
  11 | from typing import Optional
  12 | 
  13 | from .conversation_base_test import ConversationBaseTest
  14 | 
  15 | 
  16 | class PrecommitWorkflowValidationTest(ConversationBaseTest):
  17 |     """Test precommit tool with new workflow architecture"""
  18 | 
  19 |     @property
  20 |     def test_name(self) -> str:
  21 |         return "precommit_validation"
  22 | 
  23 |     @property
  24 |     def test_description(self) -> str:
  25 |         return "PrecommitWorkflow tool validation with new workflow architecture"
  26 | 
  27 |     def run_test(self) -> bool:
  28 |         """Test precommit tool capabilities"""
  29 |         # Set up the test environment
  30 |         self.setUp()
  31 | 
  32 |         try:
  33 |             self.logger.info("Test: PrecommitWorkflow tool validation (new architecture)")
  34 | 
  35 |             # Create test git repository structure with changes
  36 |             self._create_test_git_changes()
  37 | 
  38 |             # Test 1: Single validation session with multiple steps
  39 |             if not self._test_single_validation_session():
  40 |                 return False
  41 | 
  42 |             # Test 2: Validation flow that requires refocusing
  43 |             if not self._test_validation_refocus_flow():
  44 |                 return False
  45 | 
  46 |             # Test 3: Complete validation with expert analysis
  47 |             if not self._test_complete_validation_with_analysis():
  48 |                 return False
  49 | 
  50 |             # Test 4: Certain confidence behavior
  51 |             if not self._test_certain_confidence():
  52 |                 return False
  53 | 
  54 |             # Test 5: Context-aware file embedding
  55 |             if not self._test_context_aware_file_embedding():
  56 |                 return False
  57 | 
  58 |             # Test 6: Multi-step file context optimization
  59 |             if not self._test_multi_step_file_context():
  60 |                 return False
  61 | 
  62 |             self.logger.info("  ✅ All precommit validation tests passed")
  63 |             return True
  64 | 
  65 |         except Exception as e:
  66 |             self.logger.error(f"PrecommitWorkflow validation test failed: {e}")
  67 |             return False
  68 | 
  69 |     def _create_test_git_changes(self):
  70 |         """Create test files simulating git changes for pre-commit validation"""
  71 |         # Create a new API endpoint with potential security issues
  72 |         new_api_code = """#!/usr/bin/env python3
  73 | from flask import Flask, request, jsonify
  74 | import sqlite3
  75 | import os
  76 | 
  77 | app = Flask(__name__)
  78 | 
  79 | @app.route('/api/user/<user_id>', methods=['GET'])
  80 | def get_user(user_id):
  81 |     \"\"\"Get user information by ID\"\"\"
  82 |     # Potential SQL injection vulnerability
  83 |     conn = sqlite3.connect('users.db')
  84 |     cursor = conn.cursor()
  85 | 
  86 |     # BUG: Direct string interpolation creates SQL injection risk
  87 |     query = f"SELECT * FROM users WHERE id = {user_id}"
  88 |     cursor.execute(query)
  89 | 
  90 |     result = cursor.fetchone()
  91 |     conn.close()
  92 | 
  93 |     if result:
  94 |         return jsonify({
  95 |             'id': result[0],
  96 |             'username': result[1],
  97 |             'email': result[2],
  98 |             'password_hash': result[3]  # Security issue: exposing password hash
  99 |         })
 100 |     else:
 101 |         return jsonify({'error': 'User not found'}), 404
 102 | 
 103 | @app.route('/api/admin/users', methods=['GET'])
 104 | def list_all_users():
 105 |     \"\"\"Admin endpoint to list all users\"\"\"
 106 |     # Missing authentication check
 107 |     conn = sqlite3.connect('users.db')
 108 |     cursor = conn.cursor()
 109 |     cursor.execute("SELECT id, username, email FROM users")
 110 | 
 111 |     users = []
 112 |     for row in cursor.fetchall():
 113 |         users.append({
 114 |             'id': row[0],
 115 |             'username': row[1],
 116 |             'email': row[2]
 117 |         })
 118 | 
 119 |     conn.close()
 120 |     return jsonify(users)
 121 | 
 122 | if __name__ == '__main__':
 123 |     # Debug mode in production is a security risk
 124 |     app.run(debug=True, host='0.0.0.0')
 125 | """
 126 | 
 127 |         # Create configuration file with issues
 128 |         config_code = """#!/usr/bin/env python3
 129 | import os
 130 | 
 131 | # Database configuration
 132 | DATABASE_URL = os.getenv('DATABASE_URL', 'sqlite:///users.db')
 133 | 
 134 | # Security settings
 135 | SECRET_KEY = "hardcoded-secret-key-123"  # Security issue: hardcoded secret
 136 | DEBUG_MODE = True  # Should be environment-based
 137 | 
 138 | # API settings
 139 | API_RATE_LIMIT = 1000  # Very high, no rate limiting effectively
 140 | MAX_FILE_UPLOAD = 50 * 1024 * 1024  # 50MB - quite large
 141 | 
 142 | # Missing important security headers configuration
 143 | CORS_ORIGINS = "*"  # Security issue: allows all origins
 144 | """
 145 | 
 146 |         # Create test files
 147 |         self.api_file = self.create_additional_test_file("api_endpoints.py", new_api_code)
 148 |         self.config_file = self.create_additional_test_file("config.py", config_code)
 149 |         self.logger.info(f"  ✅ Created test files: {self.api_file}, {self.config_file}")
 150 | 
 151 |         # Create change description
 152 |         change_description = """COMMIT DESCRIPTION:
 153 | Added new user API endpoints and configuration for user management system.
 154 | 
 155 | CHANGES MADE:
 156 | - Added GET /api/user/<user_id> endpoint to retrieve user information
 157 | - Added GET /api/admin/users endpoint for admin user listing
 158 | - Added configuration file with database and security settings
 159 | - Set up Flask application with basic routing
 160 | 
 161 | REQUIREMENTS:
 162 | - User data should be retrievable by ID
 163 | - Admin should be able to list all users
 164 | - System should be configurable via environment variables
 165 | - Security should be properly implemented
 166 | """
 167 | 
 168 |         self.changes_file = self.create_additional_test_file("commit_description.txt", change_description)
 169 |         self.logger.info(f"  ✅ Created change description: {self.changes_file}")
 170 | 
 171 |     def _test_single_validation_session(self) -> bool:
 172 |         """Test a complete validation session with multiple steps"""
 173 |         try:
 174 |             self.logger.info("  1.1: Testing single validation session")
 175 | 
 176 |             # Step 1: Start validation
 177 |             self.logger.info("    1.1.1: Step 1 - Initial validation plan")
 178 |             response1, continuation_id = self.call_mcp_tool(
 179 |                 "precommit",
 180 |                 {
 181 |                     "step": "I need to perform comprehensive pre-commit validation for new API endpoints. Let me start by analyzing the changes and identifying potential issues.",
 182 |                     "step_number": 1,
 183 |                     "total_steps": 4,
 184 |                     "next_step_required": True,
 185 |                     "findings": "New user API endpoints and configuration added. Need to examine for security, performance, and best practices.",
 186 |                     "files_checked": [self.changes_file],
 187 |                     "relevant_files": [self.changes_file],
 188 |                     "path": self.test_dir,  # Required for step 1
 189 |                     "review_type": "full",
 190 |                     "severity_filter": "all",
 191 |                 },
 192 |             )
 193 | 
 194 |             if not response1 or not continuation_id:
 195 |                 self.logger.error("Failed to get initial validation response")
 196 |                 return False
 197 | 
 198 |             # Parse and validate JSON response
 199 |             response1_data = self._parse_precommit_response(response1)
 200 |             if not response1_data:
 201 |                 return False
 202 | 
 203 |             # Validate step 1 response structure - expect pause_for_validation for next_step_required=True
 204 |             if not self._validate_step_response(response1_data, 1, 4, True, "pause_for_validation"):
 205 |                 return False
 206 | 
 207 |             self.logger.info(f"    ✅ Step 1 successful, continuation_id: {continuation_id}")
 208 | 
 209 |             # Step 2: Examine the code for issues
 210 |             self.logger.info("    1.1.2: Step 2 - Code examination")
 211 |             response2, _ = self.call_mcp_tool(
 212 |                 "precommit",
 213 |                 {
 214 |                     "step": "Now examining the API endpoint implementation and configuration for security vulnerabilities and best practices violations.",
 215 |                     "step_number": 2,
 216 |                     "total_steps": 4,
 217 |                     "next_step_required": True,
 218 |                     "findings": "Found multiple critical security issues: SQL injection vulnerability in get_user(), hardcoded secrets in config, missing authentication, and password hash exposure.",
 219 |                     "files_checked": [self.changes_file, self.api_file, self.config_file],
 220 |                     "relevant_files": [self.api_file, self.config_file],
 221 |                     "relevant_context": ["get_user", "list_all_users"],
 222 |                     "issues_found": [
 223 |                         {"severity": "critical", "description": "SQL injection vulnerability in user lookup"},
 224 |                         {"severity": "high", "description": "Hardcoded secret key in configuration"},
 225 |                         {"severity": "high", "description": "Password hash exposed in API response"},
 226 |                         {"severity": "medium", "description": "Missing authentication on admin endpoint"},
 227 |                     ],
 228 |                     # Assessment field removed - using precommit_type instead
 229 |                     # Confidence field removed - using precommit_type instead
 230 |                     "continuation_id": continuation_id,
 231 |                 },
 232 |             )
 233 | 
 234 |             if not response2:
 235 |                 self.logger.error("Failed to continue validation to step 2")
 236 |                 return False
 237 | 
 238 |             response2_data = self._parse_precommit_response(response2)
 239 |             if not self._validate_step_response(response2_data, 2, 4, True, "pause_for_validation"):
 240 |                 return False
 241 | 
 242 |             # Check validation status tracking
 243 |             validation_status = response2_data.get("validation_status", {})
 244 |             if validation_status.get("files_checked", 0) < 3:
 245 |                 self.logger.error("Files checked count not properly tracked")
 246 |                 return False
 247 | 
 248 |             if validation_status.get("issues_identified", 0) != 4:
 249 |                 self.logger.error("Issues found not properly tracked")
 250 |                 return False
 251 | 
 252 |             if validation_status.get("precommit_type") != "external":
 253 |                 self.logger.error("Precommit type not properly tracked")
 254 |                 return False
 255 | 
 256 |             self.logger.info("    ✅ Step 2 successful with proper tracking")
 257 | 
 258 |             # Store continuation_id for next test
 259 |             self.validation_continuation_id = continuation_id
 260 |             return True
 261 | 
 262 |         except Exception as e:
 263 |             self.logger.error(f"Single validation session test failed: {e}")
 264 |             return False
 265 | 
 266 |     def _test_validation_refocus_flow(self) -> bool:
 267 |         """Test validation workflow that requires refocusing to revise findings"""
 268 |         try:
 269 |             self.logger.info("  1.2: Testing validation refocus workflow")
 270 | 
 271 |             # Start a new validation for testing refocus behaviour
 272 |             self.logger.info("    1.2.1: Start validation for refocus test")
 273 |             response1, continuation_id = self.call_mcp_tool(
 274 |                 "precommit",
 275 |                 {
 276 |                     "step": "Validating database connection optimization changes",
 277 |                     "step_number": 1,
 278 |                     "total_steps": 4,
 279 |                     "next_step_required": True,
 280 |                     "findings": "Initial analysis shows database connection pooling implementation",
 281 |                     "files_checked": ["/db/connection.py"],
 282 |                     "relevant_files": ["/db/connection.py"],
 283 |                     "path": self.test_dir,
 284 |                 },
 285 |             )
 286 | 
 287 |             if not response1 or not continuation_id:
 288 |                 self.logger.error("Failed to start refocus test validation")
 289 |                 return False
 290 | 
 291 |             # Step 2: Wrong direction
 292 |             self.logger.info("    1.2.2: Step 2 - Wrong validation focus")
 293 |             response2, _ = self.call_mcp_tool(
 294 |                 "precommit",
 295 |                 {
 296 |                     "step": "Focusing on connection pool size optimization",
 297 |                     "step_number": 2,
 298 |                     "total_steps": 4,
 299 |                     "next_step_required": True,
 300 |                     "findings": "Connection pool configuration seems reasonable, might be looking in wrong place",
 301 |                     "files_checked": ["/db/connection.py", "/config/database.py"],
 302 |                     "relevant_files": [],
 303 |                     # Assessment fields removed - using precommit_type instead
 304 |                     "continuation_id": continuation_id,
 305 |                 },
 306 |             )
 307 | 
 308 |             if not response2:
 309 |                 self.logger.error("Failed to continue to step 2")
 310 |                 return False
 311 | 
 312 |             # Step 3: Shift investigation focus
 313 |             self.logger.info("    1.2.3: Step 3 - Refocus and revise approach")
 314 |             response3, _ = self.call_mcp_tool(
 315 |                 "precommit",
 316 |                 {
 317 |                     "step": "Refocusing - the issue might not be database configuration. Let me examine the actual SQL queries and data access patterns instead.",
 318 |                     "step_number": 3,
 319 |                     "total_steps": 4,
 320 |                     "next_step_required": True,
 321 |                     "findings": "Found inefficient N+1 query pattern in user data loading causing performance issues",
 322 |                     "files_checked": ["/models/user.py"],
 323 |                     "relevant_files": ["/models/user.py"],
 324 |                     "relevant_context": ["User.load_profile"],
 325 |                     "issues_found": [
 326 |                         {"severity": "medium", "description": "N+1 query pattern in user profile loading"}
 327 |                     ],
 328 |                     # Assessment fields removed - using precommit_type instead
 329 |                     "continuation_id": continuation_id,
 330 |                 },
 331 |             )
 332 | 
 333 |             if not response3:
 334 |                 self.logger.error("Failed to refocus")
 335 |                 return False
 336 | 
 337 |             response3_data = self._parse_precommit_response(response3)
 338 |             if not self._validate_step_response(response3_data, 3, 4, True, "pause_for_validation"):
 339 |                 return False
 340 | 
 341 |             self.logger.info("    ✅ Refocus flow working correctly")
 342 |             return True
 343 | 
 344 |         except Exception as e:
 345 |             self.logger.error(f"Refocus test failed: {e}")
 346 |             return False
 347 | 
 348 |     def _test_complete_validation_with_analysis(self) -> bool:
 349 |         """Test complete validation ending with expert analysis"""
 350 |         try:
 351 |             self.logger.info("  1.3: Testing complete validation with expert analysis")
 352 | 
 353 |             # Use the continuation from first test
 354 |             continuation_id = getattr(self, "validation_continuation_id", None)
 355 |             if not continuation_id:
 356 |                 # Start fresh if no continuation available
 357 |                 self.logger.info("    1.3.0: Starting fresh validation")
 358 |                 response0, continuation_id = self.call_mcp_tool(
 359 |                     "precommit",
 360 |                     {
 361 |                         "step": "Validating the security fixes for API endpoints",
 362 |                         "step_number": 1,
 363 |                         "total_steps": 2,
 364 |                         "next_step_required": True,
 365 |                         "findings": "Found critical security vulnerabilities in API implementation",
 366 |                         "files_checked": [self.api_file],
 367 |                         "relevant_files": [self.api_file],
 368 |                         "relevant_context": ["get_user", "list_all_users"],
 369 |                         "issues_found": [{"severity": "critical", "description": "SQL injection vulnerability"}],
 370 |                         "path": self.test_dir,
 371 |                     },
 372 |                 )
 373 |                 if not response0 or not continuation_id:
 374 |                     self.logger.error("Failed to start fresh validation")
 375 |                     return False
 376 | 
 377 |             # Final step - trigger expert analysis
 378 |             self.logger.info("    1.3.1: Final step - complete validation")
 379 |             response_final, _ = self.call_mcp_tool(
 380 |                 "precommit",
 381 |                 {
 382 |                     "step": "Validation complete. I have identified all critical security issues and missing safeguards in the new API endpoints.",
 383 |                     "step_number": 2,
 384 |                     "total_steps": 2,
 385 |                     "next_step_required": False,  # Final step - triggers expert analysis
 386 |                     "findings": "Comprehensive analysis complete: SQL injection, hardcoded secrets, missing authentication, password exposure, and insecure defaults all identified with specific fixes needed.",
 387 |                     "files_checked": [self.api_file, self.config_file],
 388 |                     "relevant_files": [self.api_file, self.config_file],
 389 |                     "relevant_context": ["get_user", "list_all_users", "SECRET_KEY", "DEBUG_MODE"],
 390 |                     "issues_found": [
 391 |                         {"severity": "critical", "description": "SQL injection vulnerability in user lookup query"},
 392 |                         {"severity": "high", "description": "Hardcoded secret key exposes application security"},
 393 |                         {"severity": "high", "description": "Password hash exposed in API response"},
 394 |                         {"severity": "medium", "description": "Missing authentication on admin endpoint"},
 395 |                         {"severity": "medium", "description": "Debug mode enabled in production configuration"},
 396 |                     ],
 397 |                     # Confidence field removed - using precommit_type instead
 398 |                     "continuation_id": continuation_id,
 399 |                     "model": "flash",  # Use flash for expert analysis
 400 |                 },
 401 |             )
 402 | 
 403 |             if not response_final:
 404 |                 self.logger.error("Failed to complete validation")
 405 |                 return False
 406 | 
 407 |             response_final_data = self._parse_precommit_response(response_final)
 408 |             if not response_final_data:
 409 |                 return False
 410 | 
 411 |             # Validate final response structure - expect calling_expert_analysis for next_step_required=False
 412 |             if response_final_data.get("status") != "calling_expert_analysis":
 413 |                 self.logger.error(
 414 |                     f"Expected status 'calling_expert_analysis', got '{response_final_data.get('status')}'"
 415 |                 )
 416 |                 return False
 417 | 
 418 |             if not response_final_data.get("validation_complete"):
 419 |                 self.logger.error("Expected validation_complete=true for final step")
 420 |                 return False
 421 | 
 422 |             # Check for expert analysis
 423 |             if "expert_analysis" not in response_final_data:
 424 |                 self.logger.error("Missing expert_analysis in final response")
 425 |                 return False
 426 | 
 427 |             expert_analysis = response_final_data.get("expert_analysis", {})
 428 | 
 429 |             # Check for expected analysis content (checking common patterns)
 430 |             analysis_text = json.dumps(expert_analysis, ensure_ascii=False).lower()
 431 | 
 432 |             # Look for security issue identification
 433 |             security_indicators = ["sql", "injection", "security", "hardcoded", "secret", "authentication"]
 434 |             found_indicators = sum(1 for indicator in security_indicators if indicator in analysis_text)
 435 | 
 436 |             if found_indicators >= 3:
 437 |                 self.logger.info("    ✅ Expert analysis identified security issues correctly")
 438 |             else:
 439 |                 self.logger.warning(
 440 |                     f"    ⚠️ Expert analysis may not have fully identified security issues (found {found_indicators}/6 indicators)"
 441 |                 )
 442 | 
 443 |             # Check complete validation summary
 444 |             if "complete_validation" not in response_final_data:
 445 |                 self.logger.error("Missing complete_validation in final response")
 446 |                 return False
 447 | 
 448 |             complete_validation = response_final_data["complete_validation"]
 449 |             if not complete_validation.get("relevant_context"):
 450 |                 self.logger.error("Missing relevant context in complete validation")
 451 |                 return False
 452 | 
 453 |             if "get_user" not in complete_validation["relevant_context"]:
 454 |                 self.logger.error("Expected function not found in validation summary")
 455 |                 return False
 456 | 
 457 |             self.logger.info("    ✅ Complete validation with expert analysis successful")
 458 |             return True
 459 | 
 460 |         except Exception as e:
 461 |             self.logger.error(f"Complete validation test failed: {e}")
 462 |             return False
 463 | 
 464 |     def _test_certain_confidence(self) -> bool:
 465 |         """Test certain confidence behavior - should skip expert analysis"""
 466 |         try:
 467 |             self.logger.info("  1.4: Testing certain confidence behavior")
 468 | 
 469 |             # Test certain confidence - should skip expert analysis
 470 |             self.logger.info("    1.4.1: Certain confidence validation")
 471 |             response_certain, _ = self.call_mcp_tool(
 472 |                 "precommit",
 473 |                 {
 474 |                     "step": "I have confirmed all security issues with 100% certainty: SQL injection, hardcoded secrets, and missing authentication.",
 475 |                     "step_number": 1,
 476 |                     "total_steps": 1,
 477 |                     "next_step_required": False,  # Final step
 478 |                     "findings": "All critical issues identified: parameterized queries needed, environment variables for secrets, authentication middleware required, and debug mode must be disabled for production.",
 479 |                     "files_checked": [self.api_file, self.config_file],
 480 |                     "relevant_files": [self.api_file, self.config_file],
 481 |                     "relevant_context": ["get_user", "list_all_users"],
 482 |                     "issues_found": [
 483 |                         {
 484 |                             "severity": "critical",
 485 |                             "description": "SQL injection vulnerability - fix with parameterized queries",
 486 |                         },
 487 |                         {"severity": "high", "description": "Hardcoded secret - use environment variables"},
 488 |                         {"severity": "medium", "description": "Missing authentication - add middleware"},
 489 |                     ],
 490 |                     "precommit_type": "internal",  # This should skip expert analysis
 491 |                     "path": self.test_dir,
 492 |                     "model": "flash",
 493 |                 },
 494 |             )
 495 | 
 496 |             if not response_certain:
 497 |                 self.logger.error("Failed to test certain confidence")
 498 |                 return False
 499 | 
 500 |             response_certain_data = self._parse_precommit_response(response_certain)
 501 |             if not response_certain_data:
 502 |                 return False
 503 | 
 504 |             # Validate certain confidence response - should skip expert analysis
 505 |             if response_certain_data.get("status") != "validation_complete_ready_for_commit":
 506 |                 self.logger.error(
 507 |                     f"Expected status 'validation_complete_ready_for_commit', got '{response_certain_data.get('status')}'"
 508 |                 )
 509 |                 return False
 510 | 
 511 |             if not response_certain_data.get("skip_expert_analysis"):
 512 |                 self.logger.error("Expected skip_expert_analysis=true for certain confidence")
 513 |                 return False
 514 | 
 515 |             expert_analysis = response_certain_data.get("expert_analysis", {})
 516 |             if expert_analysis.get("status") != "skipped_due_to_internal_analysis_type":
 517 |                 self.logger.error("Expert analysis should be skipped for certain confidence")
 518 |                 return False
 519 | 
 520 |             self.logger.info("    ✅ Certain confidence behavior working correctly")
 521 |             return True
 522 | 
 523 |         except Exception as e:
 524 |             self.logger.error(f"Certain confidence test failed: {e}")
 525 |             return False
 526 | 
 527 |     def call_mcp_tool(self, tool_name: str, params: dict) -> tuple[Optional[str], Optional[str]]:
 528 |         """Call an MCP tool in-process - override for precommit-specific response handling"""
 529 |         # Use in-process implementation to maintain conversation memory
 530 |         response_text, _ = self.call_mcp_tool_direct(tool_name, params)
 531 | 
 532 |         if not response_text:
 533 |             return None, None
 534 | 
 535 |         # Extract continuation_id from precommit response specifically
 536 |         continuation_id = self._extract_precommit_continuation_id(response_text)
 537 | 
 538 |         return response_text, continuation_id
 539 | 
 540 |     def _extract_precommit_continuation_id(self, response_text: str) -> Optional[str]:
 541 |         """Extract continuation_id from precommit response"""
 542 |         try:
 543 |             # Parse the response
 544 |             response_data = json.loads(response_text)
 545 |             return response_data.get("continuation_id")
 546 | 
 547 |         except json.JSONDecodeError as e:
 548 |             self.logger.debug(f"Failed to parse response for precommit continuation_id: {e}")
 549 |             return None
 550 | 
 551 |     def _parse_precommit_response(self, response_text: str) -> dict:
 552 |         """Parse precommit tool JSON response"""
 553 |         try:
 554 |             # Parse the response - it should be direct JSON
 555 |             return json.loads(response_text)
 556 | 
 557 |         except json.JSONDecodeError as e:
 558 |             self.logger.error(f"Failed to parse precommit response as JSON: {e}")
 559 |             self.logger.error(f"Response text: {response_text[:500]}...")
 560 |             return {}
 561 | 
 562 |     def _validate_step_response(
 563 |         self,
 564 |         response_data: dict,
 565 |         expected_step: int,
 566 |         expected_total: int,
 567 |         expected_next_required: bool,
 568 |         expected_status: str,
 569 |     ) -> bool:
 570 |         """Validate a precommit validation step response structure"""
 571 |         try:
 572 |             # Check status
 573 |             if response_data.get("status") != expected_status:
 574 |                 self.logger.error(f"Expected status '{expected_status}', got '{response_data.get('status')}'")
 575 |                 return False
 576 | 
 577 |             # Check step number
 578 |             if response_data.get("step_number") != expected_step:
 579 |                 self.logger.error(f"Expected step_number {expected_step}, got {response_data.get('step_number')}")
 580 |                 return False
 581 | 
 582 |             # Check total steps
 583 |             if response_data.get("total_steps") != expected_total:
 584 |                 self.logger.error(f"Expected total_steps {expected_total}, got {response_data.get('total_steps')}")
 585 |                 return False
 586 | 
 587 |             # Check next_step_required
 588 |             if response_data.get("next_step_required") != expected_next_required:
 589 |                 self.logger.error(
 590 |                     f"Expected next_step_required {expected_next_required}, got {response_data.get('next_step_required')}"
 591 |                 )
 592 |                 return False
 593 | 
 594 |             # Check validation_status exists
 595 |             if "validation_status" not in response_data:
 596 |                 self.logger.error("Missing validation_status in response")
 597 |                 return False
 598 | 
 599 |             # Check next_steps guidance
 600 |             if not response_data.get("next_steps"):
 601 |                 self.logger.error("Missing next_steps guidance in response")
 602 |                 return False
 603 | 
 604 |             return True
 605 | 
 606 |         except Exception as e:
 607 |             self.logger.error(f"Error validating step response: {e}")
 608 |             return False
 609 | 
 610 |     def _test_context_aware_file_embedding(self) -> bool:
 611 |         """Test context-aware file embedding optimization"""
 612 |         try:
 613 |             self.logger.info("  1.5: Testing context-aware file embedding")
 614 | 
 615 |             # Create multiple test files for context testing
 616 |             auth_file_content = """#!/usr/bin/env python3
 617 | from functools import wraps
 618 | from flask import request, jsonify
 619 | 
 620 | def require_auth(f):
 621 |     \"\"\"Authentication decorator\"\"\"
 622 |     @wraps(f)
 623 |     def decorated_function(*args, **kwargs):
 624 |         token = request.headers.get('Authorization')
 625 |         if not token:
 626 |             return jsonify({'error': 'No token provided'}), 401
 627 | 
 628 |         # Validate token here
 629 |         if not validate_token(token):
 630 |             return jsonify({'error': 'Invalid token'}), 401
 631 | 
 632 |         return f(*args, **kwargs)
 633 |     return decorated_function
 634 | 
 635 | def validate_token(token):
 636 |     \"\"\"Validate authentication token\"\"\"
 637 |     # Token validation logic
 638 |     return token.startswith('Bearer ')
 639 | """
 640 | 
 641 |             middleware_file_content = """#!/usr/bin/env python3
 642 | from flask import Flask, request, g
 643 | import time
 644 | 
 645 | def add_security_headers(app):
 646 |     \"\"\"Add security headers to all responses\"\"\"
 647 |     @app.after_request
 648 |     def security_headers(response):
 649 |         response.headers['X-Content-Type-Options'] = 'nosniff'
 650 |         response.headers['X-Frame-Options'] = 'DENY'
 651 |         response.headers['X-XSS-Protection'] = '1; mode=block'
 652 |         return response
 653 | 
 654 | def rate_limiting_middleware(app):
 655 |     \"\"\"Basic rate limiting\"\"\"
 656 |     @app.before_request
 657 |     def limit_remote_addr():
 658 |         # Simple rate limiting logic
 659 |         pass
 660 | """
 661 | 
 662 |             # Create test files
 663 |             auth_file = self.create_additional_test_file("auth.py", auth_file_content)
 664 |             middleware_file = self.create_additional_test_file("middleware.py", middleware_file_content)
 665 | 
 666 |             # Test 1: New conversation, intermediate step - should only reference files
 667 |             self.logger.info("    1.5.1: New conversation intermediate step (should reference only)")
 668 |             response1, continuation_id = self.call_mcp_tool(
 669 |                 "precommit",
 670 |                 {
 671 |                     "step": "Starting validation of new authentication and security middleware",
 672 |                     "step_number": 1,
 673 |                     "total_steps": 3,
 674 |                     "next_step_required": True,  # Intermediate step
 675 |                     "findings": "Initial analysis of authentication and middleware components",
 676 |                     "files_checked": [auth_file, middleware_file],
 677 |                     "relevant_files": [auth_file],  # This should be referenced, not embedded
 678 |                     "relevant_context": ["require_auth"],
 679 |                     # Assessment fields removed - using precommit_type instead
 680 |                     "path": self.test_dir,
 681 |                     "model": "flash",
 682 |                 },
 683 |             )
 684 | 
 685 |             if not response1 or not continuation_id:
 686 |                 self.logger.error("Failed to start context-aware file embedding test")
 687 |                 return False
 688 | 
 689 |             response1_data = self._parse_precommit_response(response1)
 690 |             if not response1_data:
 691 |                 return False
 692 | 
 693 |             # Check file context - should be reference_only for intermediate step
 694 |             file_context = response1_data.get("file_context", {})
 695 |             if file_context.get("type") != "reference_only":
 696 |                 self.logger.error(f"Expected reference_only file context, got: {file_context.get('type')}")
 697 |                 return False
 698 | 
 699 |             if "Files referenced but not embedded" not in file_context.get("context_optimization", ""):
 700 |                 self.logger.error("Expected context optimization message for reference_only")
 701 |                 return False
 702 | 
 703 |             self.logger.info("    ✅ Intermediate step correctly uses reference_only file context")
 704 | 
 705 |             # Test 2: Intermediate step with continuation - should still only reference
 706 |             self.logger.info("    1.5.2: Intermediate step with continuation (should reference only)")
 707 |             response2, _ = self.call_mcp_tool(
 708 |                 "precommit",
 709 |                 {
 710 |                     "step": "Continuing validation with detailed security analysis",
 711 |                     "step_number": 2,
 712 |                     "total_steps": 3,
 713 |                     "next_step_required": True,  # Still intermediate
 714 |                     "continuation_id": continuation_id,
 715 |                     "findings": "Found potential issues in token validation and missing security headers",
 716 |                     "files_checked": [auth_file, middleware_file],
 717 |                     "relevant_files": [auth_file, middleware_file],  # Both files referenced
 718 |                     "relevant_context": ["require_auth", "validate_token", "add_security_headers"],
 719 |                     "issues_found": [
 720 |                         {"severity": "medium", "description": "Basic token validation might be insufficient"}
 721 |                     ],
 722 |                     # Assessment fields removed - using precommit_type instead
 723 |                     "model": "flash",
 724 |                 },
 725 |             )
 726 | 
 727 |             if not response2:
 728 |                 self.logger.error("Failed to continue to step 2")
 729 |                 return False
 730 | 
 731 |             response2_data = self._parse_precommit_response(response2)
 732 |             if not response2_data:
 733 |                 return False
 734 | 
 735 |             # Check file context - should still be reference_only
 736 |             file_context2 = response2_data.get("file_context", {})
 737 |             if file_context2.get("type") != "reference_only":
 738 |                 self.logger.error(f"Expected reference_only file context for step 2, got: {file_context2.get('type')}")
 739 |                 return False
 740 | 
 741 |             # Should include reference note
 742 |             if not file_context2.get("note"):
 743 |                 self.logger.error("Expected file reference note for intermediate step")
 744 |                 return False
 745 | 
 746 |             reference_note = file_context2.get("note", "")
 747 |             if "auth.py" not in reference_note or "middleware.py" not in reference_note:
 748 |                 self.logger.error("File reference note should mention both files")
 749 |                 return False
 750 | 
 751 |             self.logger.info("    ✅ Intermediate step with continuation correctly uses reference_only")
 752 | 
 753 |             # Test 3: Final step - should embed files for expert analysis
 754 |             self.logger.info("    1.5.3: Final step (should embed files)")
 755 |             response3, _ = self.call_mcp_tool(
 756 |                 "precommit",
 757 |                 {
 758 |                     "step": "Validation complete - identified security gaps and improvement areas",
 759 |                     "step_number": 3,
 760 |                     "total_steps": 3,
 761 |                     "next_step_required": False,  # Final step - should embed files
 762 |                     "continuation_id": continuation_id,
 763 |                     "findings": "Security implementation has several gaps: token validation is basic, missing CSRF protection, and rate limiting is not implemented",
 764 |                     "files_checked": [auth_file, middleware_file],
 765 |                     "relevant_files": [auth_file, middleware_file],  # Should be fully embedded
 766 |                     "relevant_context": ["require_auth", "validate_token", "add_security_headers"],
 767 |                     "issues_found": [
 768 |                         {"severity": "medium", "description": "Token validation needs strengthening"},
 769 |                         {"severity": "low", "description": "Missing CSRF protection"},
 770 |                         {"severity": "low", "description": "Rate limiting not implemented"},
 771 |                     ],
 772 |                     # Assessment field removed - using precommit_type instead
 773 |                     # Confidence field removed - using precommit_type instead
 774 |                     "model": "flash",
 775 |                 },
 776 |             )
 777 | 
 778 |             if not response3:
 779 |                 self.logger.error("Failed to complete to final step")
 780 |                 return False
 781 | 
 782 |             response3_data = self._parse_precommit_response(response3)
 783 |             if not response3_data:
 784 |                 return False
 785 | 
 786 |             # Check file context - should be fully_embedded for final step
 787 |             file_context3 = response3_data.get("file_context", {})
 788 |             if file_context3.get("type") != "fully_embedded":
 789 |                 self.logger.error(
 790 |                     f"Expected fully_embedded file context for final step, got: {file_context3.get('type')}"
 791 |                 )
 792 |                 return False
 793 | 
 794 |             if "Full file content embedded for expert analysis" not in file_context3.get("context_optimization", ""):
 795 |                 self.logger.error("Expected expert analysis optimization message for fully_embedded")
 796 |                 return False
 797 | 
 798 |             # Should show files embedded count
 799 |             files_embedded = file_context3.get("files_embedded", 0)
 800 |             if files_embedded == 0:
 801 |                 # This is OK - files might already be in conversation history
 802 |                 self.logger.info(
 803 |                     "    ℹ️ Files embedded count is 0 - files already in conversation history (smart deduplication)"
 804 |                 )
 805 |             else:
 806 |                 self.logger.info(f"    ✅ Files embedded count: {files_embedded}")
 807 | 
 808 |             self.logger.info("    ✅ Final step correctly uses fully_embedded file context")
 809 | 
 810 |             # Verify expert analysis was called for final step
 811 |             if response3_data.get("status") != "calling_expert_analysis":
 812 |                 self.logger.error("Final step should trigger expert analysis")
 813 |                 return False
 814 | 
 815 |             if "expert_analysis" not in response3_data:
 816 |                 self.logger.error("Expert analysis should be present in final step")
 817 |                 return False
 818 | 
 819 |             self.logger.info("    ✅ Context-aware file embedding test completed successfully")
 820 |             return True
 821 | 
 822 |         except Exception as e:
 823 |             self.logger.error(f"Context-aware file embedding test failed: {e}")
 824 |             return False
 825 | 
 826 |     def _test_multi_step_file_context(self) -> bool:
 827 |         """Test multi-step workflow with proper file context transitions"""
 828 |         try:
 829 |             self.logger.info("  1.6: Testing multi-step file context optimization")
 830 | 
 831 |             # Create a complex scenario with multiple files for pre-commit validation
 832 |             database_content = """#!/usr/bin/env python3
 833 | import sqlite3
 834 | import os
 835 | from contextlib import contextmanager
 836 | 
 837 | class DatabaseManager:
 838 |     def __init__(self):
 839 |         self.db_path = os.getenv('DATABASE_PATH', 'app.db')
 840 | 
 841 |     @contextmanager
 842 |     def get_connection(self):
 843 |         \"\"\"Get database connection with proper cleanup\"\"\"
 844 |         conn = None
 845 |         try:
 846 |             conn = sqlite3.connect(self.db_path)
 847 |             yield conn
 848 |         finally:
 849 |             if conn:
 850 |                 conn.close()
 851 | 
 852 |     def create_user(self, username, email, password_hash):
 853 |         \"\"\"Create a new user\"\"\"
 854 |         with self.get_connection() as conn:
 855 |             cursor = conn.cursor()
 856 |             # Proper parameterized query
 857 |             cursor.execute(
 858 |                 "INSERT INTO users (username, email, password_hash) VALUES (?, ?, ?)",
 859 |                 (username, email, password_hash)
 860 |             )
 861 |             conn.commit()
 862 |             return cursor.lastrowid
 863 | """
 864 | 
 865 |             tests_content = """#!/usr/bin/env python3
 866 | import unittest
 867 | from unittest.mock import patch, MagicMock
 868 | from database_manager import DatabaseManager
 869 | 
 870 | class TestDatabaseManager(unittest.TestCase):
 871 |     def setUp(self):
 872 |         self.db_manager = DatabaseManager()
 873 | 
 874 |     @patch('sqlite3.connect')
 875 |     def test_create_user(self, mock_connect):
 876 |         \"\"\"Test user creation\"\"\"
 877 |         mock_conn = MagicMock()
 878 |         mock_cursor = MagicMock()
 879 |         mock_cursor.lastrowid = 123
 880 |         mock_conn.cursor.return_value = mock_cursor
 881 |         mock_connect.return_value = mock_conn
 882 | 
 883 |         user_id = self.db_manager.create_user('testuser', '[email protected]', 'hashed_password')
 884 | 
 885 |         self.assertEqual(user_id, 123)
 886 |         mock_cursor.execute.assert_called_once_with(
 887 |             "INSERT INTO users (username, email, password_hash) VALUES (?, ?, ?)",
 888 |             ('testuser', '[email protected]', 'hashed_password')
 889 |         )
 890 | 
 891 | if __name__ == '__main__':
 892 |     unittest.main()
 893 | """
 894 | 
 895 |             # Create test files
 896 |             db_file = self.create_additional_test_file("database_manager.py", database_content)
 897 |             test_file = self.create_additional_test_file("test_database.py", tests_content)
 898 | 
 899 |             # Step 1: Start validation (new conversation)
 900 |             self.logger.info("    1.6.1: Step 1 - Start validation")
 901 |             response1, continuation_id = self.call_mcp_tool(
 902 |                 "precommit",
 903 |                 {
 904 |                     "step": "Validating new database manager implementation and corresponding tests",
 905 |                     "step_number": 1,
 906 |                     "total_steps": 4,
 907 |                     "next_step_required": True,
 908 |                     "findings": "New database manager with connection handling and user creation functionality",
 909 |                     "files_checked": [db_file],
 910 |                     "relevant_files": [db_file],
 911 |                     "relevant_context": [],
 912 |                     # Assessment fields removed - using precommit_type instead
 913 |                     "path": self.test_dir,
 914 |                     "model": "flash",
 915 |                 },
 916 |             )
 917 | 
 918 |             if not response1 or not continuation_id:
 919 |                 self.logger.error("Failed to start multi-step file context test")
 920 |                 return False
 921 | 
 922 |             response1_data = self._parse_precommit_response(response1)
 923 | 
 924 |             # Validate step 1 - should use reference_only
 925 |             file_context1 = response1_data.get("file_context", {})
 926 |             if file_context1.get("type") != "reference_only":
 927 |                 self.logger.error("Step 1 should use reference_only file context")
 928 |                 return False
 929 | 
 930 |             self.logger.info("    ✅ Step 1: reference_only file context")
 931 | 
 932 |             # Step 2: Expand validation
 933 |             self.logger.info("    1.6.2: Step 2 - Expand validation")
 934 |             response2, _ = self.call_mcp_tool(
 935 |                 "precommit",
 936 |                 {
 937 |                     "step": "Found good database implementation - now examining test coverage",
 938 |                     "step_number": 2,
 939 |                     "total_steps": 4,
 940 |                     "next_step_required": True,
 941 |                     "continuation_id": continuation_id,
 942 |                     "findings": "Database manager uses proper parameterized queries and context managers. Test file provides good coverage with mocking.",
 943 |                     "files_checked": [db_file, test_file],
 944 |                     "relevant_files": [db_file, test_file],
 945 |                     "relevant_context": ["DatabaseManager.create_user", "TestDatabaseManager.test_create_user"],
 946 |                     # Assessment fields removed - using precommit_type instead
 947 |                     "model": "flash",
 948 |                 },
 949 |             )
 950 | 
 951 |             if not response2:
 952 |                 self.logger.error("Failed to continue to step 2")
 953 |                 return False
 954 | 
 955 |             response2_data = self._parse_precommit_response(response2)
 956 | 
 957 |             # Validate step 2 - should still use reference_only
 958 |             file_context2 = response2_data.get("file_context", {})
 959 |             if file_context2.get("type") != "reference_only":
 960 |                 self.logger.error("Step 2 should use reference_only file context")
 961 |                 return False
 962 | 
 963 |             # Should reference both files
 964 |             reference_note = file_context2.get("note", "")
 965 |             if "database_manager.py" not in reference_note or "test_database.py" not in reference_note:
 966 |                 self.logger.error("Step 2 should reference both files in note")
 967 |                 return False
 968 | 
 969 |             self.logger.info("    ✅ Step 2: reference_only file context with multiple files")
 970 | 
 971 |             # Step 3: Deep analysis
 972 |             self.logger.info("    1.6.3: Step 3 - Deep analysis")
 973 |             response3, _ = self.call_mcp_tool(
 974 |                 "precommit",
 975 |                 {
 976 |                     "step": "Performing comprehensive security and best practices analysis",
 977 |                     "step_number": 3,
 978 |                     "total_steps": 4,
 979 |                     "next_step_required": True,
 980 |                     "continuation_id": continuation_id,
 981 |                     "findings": "Code follows security best practices: parameterized queries prevent SQL injection, proper resource cleanup with context managers, environment-based configuration.",
 982 |                     "files_checked": [db_file, test_file],
 983 |                     "relevant_files": [db_file, test_file],
 984 |                     "relevant_context": ["DatabaseManager.get_connection", "DatabaseManager.create_user"],
 985 |                     "issues_found": [],  # No issues found
 986 |                     # Assessment field removed - using precommit_type instead
 987 |                     # Confidence field removed - using precommit_type instead
 988 |                     "model": "flash",
 989 |                 },
 990 |             )
 991 | 
 992 |             if not response3:
 993 |                 self.logger.error("Failed to continue to step 3")
 994 |                 return False
 995 | 
 996 |             response3_data = self._parse_precommit_response(response3)
 997 | 
 998 |             # Validate step 3 - should still use reference_only
 999 |             file_context3 = response3_data.get("file_context", {})
1000 |             if file_context3.get("type") != "reference_only":
1001 |                 self.logger.error("Step 3 should use reference_only file context")
1002 |                 return False
1003 | 
1004 |             self.logger.info("    ✅ Step 3: reference_only file context")
1005 | 
1006 |             # Step 4: Final validation with expert consultation
1007 |             self.logger.info("    1.6.4: Step 4 - Final step with expert analysis")
1008 |             response4, _ = self.call_mcp_tool(
1009 |                 "precommit",
1010 |                 {
1011 |                     "step": "Validation complete - code is ready for commit",
1012 |                     "step_number": 4,
1013 |                     "total_steps": 4,
1014 |                     "next_step_required": False,  # Final step - should embed files
1015 |                     "continuation_id": continuation_id,
1016 |                     "findings": "Comprehensive validation complete: secure implementation with parameterized queries, proper resource management, good test coverage, and no security vulnerabilities identified.",
1017 |                     "files_checked": [db_file, test_file],
1018 |                     "relevant_files": [db_file, test_file],
1019 |                     "relevant_context": ["DatabaseManager", "TestDatabaseManager"],
1020 |                     "issues_found": [],
1021 |                     # Assessment field removed - using precommit_type instead
1022 |                     # Confidence field removed - using precommit_type instead
1023 |                     "model": "flash",
1024 |                 },
1025 |             )
1026 | 
1027 |             if not response4:
1028 |                 self.logger.error("Failed to complete to final step")
1029 |                 return False
1030 | 
1031 |             response4_data = self._parse_precommit_response(response4)
1032 | 
1033 |             # Validate step 4 - should use fully_embedded for expert analysis
1034 |             file_context4 = response4_data.get("file_context", {})
1035 |             if file_context4.get("type") != "fully_embedded":
1036 |                 self.logger.error("Step 4 (final) should use fully_embedded file context")
1037 |                 return False
1038 | 
1039 |             if "expert analysis" not in file_context4.get("context_optimization", "").lower():
1040 |                 self.logger.error("Final step should mention expert analysis in context optimization")
1041 |                 return False
1042 | 
1043 |             # Verify expert analysis was triggered
1044 |             if response4_data.get("status") != "calling_expert_analysis":
1045 |                 self.logger.error("Final step should trigger expert analysis")
1046 |                 return False
1047 | 
1048 |             # Check that expert analysis has file context
1049 |             expert_analysis = response4_data.get("expert_analysis", {})
1050 |             if not expert_analysis:
1051 |                 self.logger.error("Expert analysis should be present in final step")
1052 |                 return False
1053 | 
1054 |             self.logger.info("    ✅ Step 4: fully_embedded file context with expert analysis")
1055 | 
1056 |             # Validate the complete workflow progression
1057 |             progression_summary = {
1058 |                 "step_1": "reference_only (new conversation, intermediate)",
1059 |                 "step_2": "reference_only (continuation, intermediate)",
1060 |                 "step_3": "reference_only (continuation, intermediate)",
1061 |                 "step_4": "fully_embedded (continuation, final)",
1062 |             }
1063 | 
1064 |             self.logger.info("    📋 File context progression:")
1065 |             for step, context_type in progression_summary.items():
1066 |                 self.logger.info(f"      {step}: {context_type}")
1067 | 
1068 |             self.logger.info("    ✅ Multi-step file context optimization test completed successfully")
1069 |             return True
1070 | 
1071 |         except Exception as e:
1072 |             self.logger.error(f"Multi-step file context test failed: {e}")
1073 |             return False
1074 | 
```
Page 21/25FirstPrevNextLast