#
tokens: 36232/50000 13/13 files
lines: on (toggle) GitHub
raw markdown copy reset
# Directory Structure

```
├── .cursor
│   └── rules
│       ├── fastmcp.mdc
│       └── gaql-google-ads-query-language.mdc
├── .env.example
├── .gitignore
├── .python-version
├── bg.jpeg
├── docs
│   ├── fastmcp.md
│   ├── gaql-google-ads-query-language.md
│   └── great-gaql-samples.md
├── format_customer_id_test.py
├── gaql-google-ads-query-language.mdc
├── google_ads_server.py
├── google-ads.svg
├── ixigo-logo.png
├── LICENSE
├── pulls
│   └── 9
│       └── comments
├── pyproject.toml
├── README.md
├── requirements.txt
├── test_google_ads_mcp.py
└── test_token_refresh.py
```

# Files

--------------------------------------------------------------------------------
/.python-version:
--------------------------------------------------------------------------------

```
1 | 3.11
2 | 
```

--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------

```
 1 | # Python-generated files
 2 | __pycache__/
 3 | *.py[oc]
 4 | build/
 5 | dist/
 6 | wheels/
 7 | *.egg-info/
 8 | *.egg
 9 | 
10 | # Virtual environments
11 | .venv/
12 | venv/
13 | ENV/
14 | env/
15 | .env
16 | 
17 | # Environment and credentials
18 | .env
19 | *.env
20 | service_account_credentials.json
21 | credentials.json
22 | token.json
23 | 
24 | # Editor-specific files
25 | .vscode/
26 | .idea/
27 | *.sublime-*
28 | *.swp
29 | *.swo
30 | *~
31 | 
32 | # OS-specific files
33 | .DS_Store
34 | Thumbs.db
35 | desktop.ini
36 | 
37 | # Testing and coverage
38 | .coverage
39 | .coverage.*
40 | htmlcov/
41 | .pytest_cache/
42 | .tox/
43 | nosetests.xml
44 | coverage.xml
45 | *.cover
46 | 
47 | # Documentation
48 | docs/_build/
49 | site/
50 | 
51 | # Logs
52 | *.log
53 | 
54 | google_ads_token.json
55 | 
56 | uv.lock
```

--------------------------------------------------------------------------------
/.env.example:
--------------------------------------------------------------------------------

```
 1 | # Google Ads MCP Environment Configuration
 2 | # Copy this file to .env and fill in your actual values
 3 | 
 4 | # Authentication Type (choose one: "oauth" or "service_account")
 5 | GOOGLE_ADS_AUTH_TYPE=oauth
 6 | 
 7 | # Credentials Path
 8 | # For OAuth: Path to client_secret.json or saved token file
 9 | # For Service Account: Path to service account key file
10 | GOOGLE_ADS_CREDENTIALS_PATH=/path/to/credentials.json
11 | 
12 | # Google Ads Developer Token (required)
13 | GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token_here
14 | 
15 | # Manager Account ID (optional, for MCC accounts)
16 | # Format: XXX-XXX-XXXX or XXXXXXXXXX
17 | GOOGLE_ADS_LOGIN_CUSTOMER_ID=
18 | 
19 | # For OAuth-specific config (required if using OAuth and there's no client_secret.json)
20 | GOOGLE_ADS_CLIENT_ID=your_client_id_here
21 | GOOGLE_ADS_CLIENT_SECRET=your_client_secret_here
22 | 
23 | # For Service Account-specific config (optional)
24 | # Email to impersonate with the service account (typically your admin email)
25 | GOOGLE_ADS_IMPERSONATION_EMAIL=
26 | 
```

--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------

```markdown
  1 | # Google Ads MCP
  2 | 
  3 | ![Google Ads MCP](bg.jpeg)
  4 | 
  5 | A tool that connects [Google Ads](https://ads.google.com/) with Claude AI, allowing you to analyze your advertising data through natural language conversations. This integration gives you access to campaign information, performance metrics, keyword analytics, and ad management—all through simple chat with Claude.
  6 | 
  7 | ---
  8 | 
  9 | ## What Can This Tool Do For Advertising Professionals?
 10 | 
 11 | 1. **Account Management**  
 12 |    - See all your Google Ads accounts in one place
 13 |    - Get account details and basic campaign information
 14 | 
 15 | 2. **Campaign Analytics & Reporting**  
 16 |    - Discover which campaigns are performing best
 17 |    - Track impressions, clicks, conversions, and cost metrics
 18 |    - Analyze performance trends over time
 19 |    - Compare different time periods to spot changes
 20 |    - **Visualize your data** with charts and graphs created by Claude
 21 | 
 22 | 3. **Keyword & Ad Performance**  
 23 |    - Identify top and underperforming keywords
 24 |    - Analyze ad copy effectiveness 
 25 |    - Check quality scores and competitive metrics
 26 |    - Get actionable insights on how to improve your campaigns
 27 | 
 28 | 4. **Budget & Bid Management**  
 29 |    - Monitor campaign budgets and spending
 30 |    - Analyze bid strategies and performance
 31 |    - Identify opportunities for optimization
 32 |    - Get recommendations for budget allocation
 33 | 
 34 | ---
 35 | 
 36 | ## Google Ads MCP Architecture Flow
 37 | 
 38 | ```mermaid
 39 | flowchart TB
 40 |     User(User) -->|Interacts with| Claude
 41 |     Claude(Claude AI Assistant) -->|Makes requests to| MCP[Google Ads MCP Server]
 42 |     User -->|Can also use| Cursor[Cursor AI Code Editor]
 43 |     Cursor -->|Makes requests to| MCP
 44 |     
 45 |     subgraph "MCP Server"
 46 |         FastMCP[FastMCP Server] 
 47 |         Tools[Available Tools]
 48 |         Auth[Authentication]
 49 |         
 50 |         FastMCP -->|Exposes| Tools
 51 |         FastMCP -->|Uses| Auth
 52 |     end
 53 |     
 54 |     subgraph "Google Ads Tools"
 55 |         ListAccounts[list_accounts]
 56 |         ExecuteGAQL[execute_gaql_query]
 57 |         CampaignPerf[get_campaign_performance]
 58 |         AdPerf[get_ad_performance]
 59 |         RunGAQL[run_gaql]
 60 |     end
 61 |     
 62 |     Tools -->|Includes| ListAccounts
 63 |     Tools -->|Includes| ExecuteGAQL
 64 |     Tools -->|Includes| CampaignPerf
 65 |     Tools -->|Includes| AdPerf
 66 |     Tools -->|Includes| RunGAQL
 67 |     
 68 |     subgraph "Authentication"
 69 |         OAuth[OAuth 2.0 Client ID]
 70 |         ServiceAccount[Service Account]
 71 |         Credentials[Google Ads API Credentials]
 72 |         
 73 |         OAuth -->|Provides| Credentials
 74 |         ServiceAccount -->|Provides| Credentials
 75 |     end
 76 |     
 77 |     MCP -->|Communicates with| GoogleAdsAPI[Google Ads API]
 78 |     GoogleAdsAPI -->|Returns| AdData[Advertising Data]
 79 |     AdData -->|Analyzed by| Claude
 80 |     AdData -->|Visualized by| Claude
 81 |     AdData -->|Can be used by| Cursor
 82 |     
 83 |     Credentials -->|Authorizes| GoogleAdsAPI
 84 |     
 85 |     subgraph "Configuration"
 86 |         EnvVars[Environment Variables]
 87 |         ConfigFiles[Configuration Files]
 88 |         
 89 |         EnvVars -->|Configures| MCP
 90 |         ConfigFiles -->|Configures| Claude
 91 |         ConfigFiles -->|Configures| Cursor
 92 |     end
 93 | ```
 94 | 
 95 | ## Available Tools
 96 | 
 97 | Here's what you can ask Claude to do once you've set up this integration:
 98 | 
 99 | | **What You Can Ask For**        | **What It Does**                                            | **What You'll Need to Provide**                                 |
100 | |---------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
101 | | `list_accounts`                 | Shows all your Google Ads accounts                          | Nothing - just ask!                                             |
102 | | `execute_gaql_query`            | Runs a Google Ads Query Language query                      | Your account ID and a GAQL query                               |
103 | | `get_campaign_performance`      | Shows campaign metrics with performance data                | Your account ID and time period                                 |
104 | | `get_ad_performance`            | Detailed analysis of your ad creative performance           | Your account ID and time period                                 |
105 | | `run_gaql`                      | Runs any arbitrary GAQL query with formatting options       | Your account ID, query, and format (table, JSON, or CSV)        |
106 | 
107 | ### Using the Advanced Query Tools
108 | 
109 | The `run_gaql` tool is especially powerful as it allows you to run any custom Google Ads Query Language (GAQL) query. Here are some example queries you can use:
110 | 
111 | ### Example 1: Basic campaign metrics
112 | 
113 | ```sql
114 | SELECT 
115 |     campaign.name, 
116 |     metrics.clicks, 
117 |     metrics.impressions 
118 | FROM campaign 
119 | WHERE segments.date DURING LAST_7DAYS
120 | ```
121 | 
122 | ### Example 2: Ad group performance
123 | 
124 | ```sql
125 | SELECT 
126 |     ad_group.name, 
127 |     metrics.conversions, 
128 |     metrics.cost_micros 
129 | FROM ad_group 
130 | WHERE metrics.clicks > 100
131 | ```
132 | 
133 | ### Example 3: Keyword analysis
134 | 
135 | ```sql
136 | SELECT 
137 |     keyword.text, 
138 |     metrics.average_position, 
139 |     metrics.ctr 
140 | FROM keyword_view 
141 | ORDER BY metrics.impressions DESC
142 | ```
143 | 
144 | *For a complete list of all available tools and their detailed descriptions, ask Claude to "list tools" after setup.*
145 | 
146 | ---
147 | 
148 | ## Getting Started (No Coding Experience Required!)
149 | 
150 | ### 1. Set Up Google Ads API Access
151 | 
152 | Before using this tool, you'll need to create API credentials that allow Claude to access your Google Ads data. You can choose between two authentication methods:
153 | 
154 | #### Option A: OAuth 2.0 Client ID (User Authentication)
155 | 
156 | Best for individual users or desktop applications:
157 | 
158 | 1. Go to the [Google Cloud Console](https://console.cloud.google.com/)
159 | 2. Create a new project or select an existing one
160 | 3. Enable the Google Ads API
161 | 4. Go to "Credentials" → "Create Credentials" → "OAuth Client ID"
162 | 5. Choose "Desktop Application" as the application type
163 | 6. Download the OAuth client configuration file (client_secret.json)
164 | 7. Create a Google Ads API Developer token (see below)
165 | 
166 | #### Option B: Service Account (Server-to-Server Authentication)
167 | 
168 | Better for automated systems or managing multiple accounts:
169 | 
170 | 1. Go to the [Google Cloud Console](https://console.cloud.google.com/)
171 | 2. Create a new project or select an existing one
172 | 3. Enable the Google Ads API
173 | 4. Go to "Credentials" → "Create Credentials" → "Service Account"
174 | 5. Download the service account key file (JSON)
175 | 6. Grant the service account access to your Google Ads accounts
176 | 7. Create a Google Ads API Developer token (see below)
177 | 
178 | #### Authentication Token Refreshing
179 | 
180 | The application now includes robust token refresh handling:
181 | 
182 | - **OAuth 2.0 Tokens**: The tool will automatically refresh expired OAuth tokens when possible, or prompt for re-authentication if the refresh token is invalid.
183 | - **Service Account Tokens**: Service account tokens are automatically generated and refreshed as needed without user intervention.
184 | 
185 | #### Authentication Method Comparison
186 | 
187 | Choose OAuth 2.0 Client ID if:
188 | 
189 | - You're building a desktop application
190 | - Users need to explicitly grant access
191 | - You're managing a single account or a few personal accounts
192 | - You want users to have control over access permissions
193 | 
194 | Choose Service Account if:
195 | 
196 | - You're building an automated system
197 | - You need server-to-server authentication
198 | - You're managing multiple accounts programmatically
199 | - You don't want/need user interaction for authentication
200 | - You need automatic token refreshing without user intervention
201 | 
202 | #### Getting a Developer Token
203 | 
204 | 1. Sign in to your Google Ads account at [https://ads.google.com](https://ads.google.com)
205 | 2. Click on Tools & Settings (wrench icon) in the top navigation
206 | 3. Under "Setup", click "API Center"
207 | 4. If you haven't already, accept the Terms of Service
208 | 5. Click "Apply for token" 
209 | 6. Fill out the application form with details about how you plan to use the API
210 | 7. Submit the application and wait for approval (usually 1-3 business days)
211 | 
212 | Note: Initially, you'll get a test Developer Token that has some limitations. Once you've tested your implementation, you can apply for a production token that removes these restrictions.
213 | 
214 | ### Understanding the Login Customer ID
215 | 
216 | The `GOOGLE_ADS_LOGIN_CUSTOMER_ID` is optional and is primarily used when:
217 | 
218 | - You're working with a Google Ads Manager Account (MCC)
219 | - You need to access multiple client accounts under that manager account
220 | 
221 | The Login Customer ID should be your Manager Account ID (format: XXX-XXX-XXXX) if:
222 | 
223 | - You're accessing multiple accounts under a manager account
224 | - You want to use manager account credentials to access client accounts
225 | 
226 | You can skip this setting if:
227 | 
228 | - You're only accessing a single Google Ads account
229 | - You're using credentials directly from the account you want to access
230 | 
231 | To find your Manager Account ID:
232 | 
233 | 1. Sign in to your Google Ads Manager Account
234 | 2. Click on the settings icon (gear)
235 | 3. Your Manager Account ID will be displayed in the format XXX-XXX-XXXX
236 | 4. Download the credentials file (a JSON file)
237 | 
238 | **🎬 Watch this beginner-friendly tutorial on Youtube:**
239 | COMING SOON
240 | 
241 | ### 2. Install Required Software
242 | 
243 | You'll need to install these tools on your computer:
244 | 
245 | - [Python](https://www.python.org/downloads/) (version 3.11 or newer) - This runs the connection between Google Ads and Claude
246 | - [Node.js](https://nodejs.org/en) - Required for running the MCP inspector and certain MCP components
247 | - [Claude Desktop](https://claude.ai/download) - The AI assistant you'll chat with
248 | 
249 | Make sure both Python and Node.js are properly installed and available in your system path before proceeding.
250 | 
251 | ### 3. Download the Google Ads MCP 
252 | 
253 | You need to download this tool to your computer. The easiest way is:
254 | 
255 | 1. Click the green "Code" button at the top of this page
256 | 2. Select "Download ZIP"
257 | 3. Unzip the downloaded file to a location you can easily find (like your Documents folder)
258 | 
259 | Alternatively, if you're familiar with Git:
260 | 
261 | ```bash
262 | git clone https://github.com/ixigo/mcp-google-ads.git
263 | ```
264 | 
265 | ### 4. Install Required Components
266 | 
267 | Open your computer's Terminal (Mac) or Command Prompt (Windows):
268 | 
269 | 1. Navigate to the folder where you unzipped the files:
270 | 
271 |    ```bash
272 |    # Example (replace with your actual path):
273 |    cd ~/Documents/mcp-google-ads-main
274 |    ```
275 | 
276 | 2. Create a virtual environment (this keeps the project dependencies isolated):
277 | 
278 |    ```bash
279 |    # Using uv (recommended):
280 |    uv venv .venv
281 |    
282 |    # If uv is not installed, install it first:
283 |    pip install uv
284 |    # Then create the virtual environment:
285 |    uv venv .venv
286 | 
287 |    # OR using standard Python:
288 |    python -m venv .venv
289 |    ```
290 | 
291 |    **Note:** If you get a "pip not found" error when trying to install uv, see the "If you get 'pip not found' error" section below.
292 | 
293 | 3. Activate the virtual environment:
294 | 
295 |    ```bash
296 |    # On Mac/Linux:
297 |    source .venv/bin/activate
298 |    
299 |    # On Windows:
300 |    .venv\Scripts\activate
301 |    ```
302 | 
303 | 4. Install the required dependencies:
304 | 
305 |    ```bash
306 |    # Using uv:
307 |    uv pip install -r requirements.txt
308 | 
309 |    # OR using standard pip:
310 |    pip install -r requirements.txt
311 |    
312 |    # If you encounter any issues with the MCP package, install it separately:
313 |    pip install mcp
314 |    ```
315 | 
316 |    **If you get "pip not found" error:**
317 | 
318 |    ```bash
319 |    # First ensure pip is installed and updated:
320 |    python3 -m ensurepip --upgrade
321 |    python3 -m pip install --upgrade pip
322 |    
323 |    # Then try installing the requirements again:
324 |    python3 -m pip install -r requirements.txt
325 |    
326 |    # Or to install uv:
327 |    python3 -m pip install uv
328 |    ```
329 | 
330 | When you see `(.venv)` at the beginning of your command prompt, it means the virtual environment is active and the dependencies will be installed there without affecting your system Python installation.
331 | 
332 | ### 5. Setting Up Environment Configuration
333 | 
334 | The Google Ads MCP now supports environment file configuration for easier setup.
335 | 
336 | #### Using .env File (Recommended)
337 | 
338 | 1. Copy the `.env.example` file to `.env` in your project directory:
339 | 
340 |    ```bash
341 |    cp .env.example .env
342 |    ```
343 | 
344 | 2. Edit the `.env` file with your actual configuration values:
345 | 
346 |    ```bash
347 |    # Edit the .env file with your favorite text editor
348 |    # For Mac:
349 |    nano .env
350 |    
351 |    # For Windows:
352 |    notepad .env
353 |    ```
354 | 
355 | 3. Set the following values in your `.env` file:
356 | 
357 |    ```
358 |    # Authentication Type: "oauth" or "service_account"
359 |    GOOGLE_ADS_AUTH_TYPE=oauth
360 |    
361 |    # Path to your credentials file (OAuth client secret or service account key)
362 |    GOOGLE_ADS_CREDENTIALS_PATH=/path/to/your/credentials.json
363 |    
364 |    # Your Google Ads Developer Token
365 |    GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token_here
366 |    
367 |    # Optional: Manager Account ID (if applicable)
368 |    GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_manager_account_id
369 |    ```
370 | 
371 | 4. Save the file.
372 | 
373 | The application will automatically load these values from the `.env` file when it starts.
374 | 
375 | #### Using Direct Environment Variables
376 | 
377 | You can also set environment variables directly in your system or in the configuration files for Claude or Cursor:
378 | 
379 | ##### For Claude Desktop
380 | 
381 | ```json
382 | {
383 |   "mcpServers": {
384 |     "googleAdsServer": {
385 |       "command": "/FULL/PATH/TO/mcp-google-ads-main/.venv/bin/python",
386 |       "args": ["/FULL/PATH/TO/mcp-google-ads-main/google_ads_server.py"],
387 |       "env": {
388 |         "GOOGLE_ADS_AUTH_TYPE": "oauth",
389 |         "GOOGLE_ADS_CREDENTIALS_PATH": "/FULL/PATH/TO/mcp-google-ads-main/credentials.json",
390 |         "GOOGLE_ADS_DEVELOPER_TOKEN": "YOUR_DEVELOPER_TOKEN_HERE",
391 |         "GOOGLE_ADS_LOGIN_CUSTOMER_ID": "YOUR_MANAGER_ACCOUNT_ID_HERE"
392 |       }
393 |     }
394 |   }
395 | }
396 | ```
397 | 
398 | ##### For Cursor
399 | 
400 | ```json
401 | {
402 |   "mcpServers": {
403 |     "googleAdsServer": {
404 |       "command": "/FULL/PATH/TO/mcp-google-ads-main/.venv/bin/python",
405 |       "args": ["/FULL/PATH/TO/mcp-google-ads-main/google_ads_server.py"],
406 |       "env": {
407 |         "GOOGLE_ADS_AUTH_TYPE": "oauth",
408 |         "GOOGLE_ADS_CREDENTIALS_PATH": "/FULL/PATH/TO/mcp-google-ads-main/credentials.json",
409 |         "GOOGLE_ADS_DEVELOPER_TOKEN": "YOUR_DEVELOPER_TOKEN_HERE",
410 |         "GOOGLE_ADS_LOGIN_CUSTOMER_ID": "YOUR_MANAGER_ACCOUNT_ID_HERE"
411 |       }
412 |     }
413 |   }
414 | }
415 | ```
416 | 
417 | ### 6. Connect Claude to Google Ads
418 | 
419 | 1. Download and install [Claude Desktop](https://claude.ai/download) if you haven't already
420 | 2. Make sure you have your Google service account credentials file saved somewhere on your computer
421 | 3. Open your computer's Terminal (Mac) or Command Prompt (Windows) and type:
422 | 
423 | ```bash
424 | # For Mac users:
425 | nano ~/Library/Application\ Support/Claude/claude_desktop_config.json
426 | 
427 | # For Windows users:
428 | notepad %APPDATA%\Claude\claude_desktop_config.json
429 | ```
430 | 
431 | Add the following text (this tells Claude how to connect to Google Ads):
432 | 
433 | ```json
434 | {
435 |   "mcpServers": {
436 |     "googleAdsServer": {
437 |       "command": "/FULL/PATH/TO/mcp-google-ads-main/.venv/bin/python",
438 |       "args": ["/FULL/PATH/TO/mcp-google-ads-main/google_ads_server.py"],
439 |       "env": {
440 |         "GOOGLE_ADS_CREDENTIALS_PATH": "/FULL/PATH/TO/mcp-google-ads-main/service_account_credentials.json",
441 |         "GOOGLE_ADS_DEVELOPER_TOKEN": "YOUR_DEVELOPER_TOKEN_HERE",
442 |         "GOOGLE_ADS_LOGIN_CUSTOMER_ID": "YOUR_MANAGER_ACCOUNT_ID_HERE"
443 |       }
444 |     }
445 |   }
446 | }
447 | ```
448 | 
449 | **Important:** Replace all paths and values with the actual information for your account:
450 | 
451 | - The first path should point to the Python executable inside your virtual environment
452 | - The second path should point to the `google_ads_server.py` file inside the folder you unzipped
453 | - The third path should point to your Google service account credentials JSON file
454 | - Add your Google Ads Developer Token 
455 | - Add your Google Ads Manager Account ID (if applicable)
456 | 
457 | Examples:
458 | 
459 | - Mac: 
460 |   - Python path: `/Users/ernesto/Documents/mcp-google-ads/.venv/bin/python`
461 |   - Script path: `/Users/ernesto/Documents/mcp-google-ads/google_ads_server.py`
462 | - Windows: 
463 |   - Python path: `C:\\Users\\ernesto\\Documents\\mcp-google-ads\\.venv\\Scripts\\python.exe`
464 |   - Script path: `C:\\Users\\ernesto\\Documents\\mcp-google-ads\\google_ads_server.py`
465 | 
466 | 4. Save the file:
467 | 
468 |    - Mac: Press Ctrl+O, then Enter, then Ctrl+X to exit
469 |    - Windows: Click File > Save, then close Notepad
470 | 
471 | 5. Restart Claude Desktop
472 | 
473 | 6. When Claude opens, you should now see Google Ads tools available in the tools section
474 | 
475 | ### 5a. Connect to Cursor (AI Code Editor)
476 | 
477 | Cursor is an AI-powered code editor that can be enhanced with MCP tools. You can integrate this Google Ads MCP tool with Cursor to analyze advertising data directly within your coding environment.
478 | 
479 | #### Setting Up Cursor Integration
480 | 
481 | 1. If you haven't already, download and install [Cursor](https://cursor.sh/) 
482 | 2. Create a Cursor MCP configuration file:
483 | 
484 |    **For project-specific configuration:**
485 |    Create a `.cursor/mcp.json` file in your project directory.
486 | 
487 |    **For global configuration (available in all projects):**
488 |    Create a `~/.cursor/mcp.json` file in your home directory.
489 | 
490 | 3. Add the following configuration to your MCP config file:
491 | 
492 |    ```json
493 |    {
494 |      "mcpServers": {
495 |        "googleAdsServer": {
496 |          "command": "/FULL/PATH/TO/mcp-google-ads-main/.venv/bin/python",
497 |          "args": ["/FULL/PATH/TO/mcp-google-ads-main/google_ads_server.py"],
498 |          "env": {
499 |            "GOOGLE_ADS_CREDENTIALS_PATH": "/FULL/PATH/TO/mcp-google-ads-main/service_account_credentials.json",
500 |            "GOOGLE_ADS_DEVELOPER_TOKEN": "YOUR_DEVELOPER_TOKEN_HERE",
501 |            "GOOGLE_ADS_LOGIN_CUSTOMER_ID": "YOUR_MANAGER_ACCOUNT_ID_HERE"
502 |          }
503 |        }
504 |      }
505 |    }
506 |    ```
507 | 
508 |    **Important:** Replace all paths and values with the actual information for your account, just like in the Claude Desktop configuration.
509 | 
510 | 4. Restart Cursor or reload the workspace to apply the new configuration.
511 | 
512 | 5. The Google Ads MCP will now appear in Cursor's "Available Tools" section and can be used by Cursor's AI agent when needed.
513 | 
514 | #### Using Google Ads MCP in Cursor
515 | 
516 | When working in Cursor, you can ask the AI agent to use the Google Ads tools directly. For example:
517 | 
518 | - "Use the Google Ads MCP to list all my accounts and show me which ones have the highest spend."
519 | - "Can you analyze my campaign performance for the last 30 days using the Google Ads MCP?"
520 | - "Run a GAQL query to find my top converting keywords using the Google Ads tools."
521 | 
522 | Cursor will prompt you to approve the tool usage (unless you've enabled Yolo mode) and then display the results directly in the chat interface.
523 | 
524 | #### Cursor-Specific Features
525 | 
526 | When using the Google Ads MCP with Cursor, you can:
527 | 
528 | 1. **Combine Code and Ads Analysis**: Ask Cursor to analyze your marketing-related code alongside actual campaign performance data.
529 | 2. **Generate Data Visualizations**: Request charts and visualizations of your ad performance directly in your development environment.
530 | 3. **Implement Recommendations**: Let Cursor suggest code improvements based on your actual advertising data.
531 | 
532 | This integration is particularly valuable for developers working on marketing automation, analytics dashboards, or e-commerce applications where ad performance directly impacts code decisions.
533 | 
534 | ### 6. Start Analyzing Your Advertising Data!
535 | 
536 | Now you can ask Claude questions about your Google Ads data! Claude can not only retrieve the data but also analyze it, explain trends, and create visualizations to help you understand your advertising performance better.
537 | 
538 | Here are some powerful prompts you can use with each tool:
539 | 
540 | | **Tool Name**                   | **Sample Prompt**                                                                                |
541 | |---------------------------------|--------------------------------------------------------------------------------------------------|
542 | | `list_accounts`                 | "List all my Google Ads accounts and tell me which ones have the highest spend this month."      |
543 | | `execute_gaql_query`            | "Execute this query for account 123-456-7890: SELECT campaign.name, metrics.clicks FROM campaign WHERE metrics.impressions > 1000" |
544 | | `get_campaign_performance`      | "Show me the top 10 campaigns for account 123-456-7890 in the last 30 days, highlight any with ROAS below 2, and suggest optimization strategies." |
545 | | `get_ad_performance`            | "Do a comprehensive analysis of which ad copy elements are driving the best CTR in my search campaigns and give me actionable recommendations." |
546 | | `run_gaql`                      | "Run this query and format it as a CSV: SELECT ad_group.name, metrics.clicks, metrics.conversions FROM ad_group WHERE campaign.name LIKE '%Brand%'" |
547 | 
548 | You can also ask Claude to combine multiple tools and analyze the results. For example:
549 | 
550 | - "Find my top 20 converting keywords, check their quality scores and impression share, and create a report highlighting opportunities for scaling."
551 | 
552 | - "Analyze my account's performance trend over the last 90 days, identify my fastest-growing campaigns, and check if there are any budget limitations holding them back."
553 | 
554 | - "Compare my desktop vs. mobile ad performance, visualize the differences with charts, and recommend specific campaigns that need mobile bid adjustments based on performance gaps."
555 | 
556 | - "Identify campaigns where I'm spending the most on search terms that aren't in my keyword list, then suggest which ones should be added as exact match keywords."
557 | 
558 | Claude will use the Google Ads tools to fetch the data, present it in an easy-to-understand format, create visualizations when helpful, and provide actionable insights based on the results.
559 | 
560 | ---
561 | 
562 | ## Data Visualization Capabilities
563 | 
564 | Claude can help you visualize your Google Ads data in various ways:
565 | 
566 | - **Trend Charts**: See how metrics change over time
567 | - **Comparison Graphs**: Compare different campaigns or ad groups
568 | - **Performance Distributions**: Understand how your ads perform across devices or audiences
569 | - **Correlation Analysis**: Identify relationships between spend and conversion metrics
570 | - **Heatmaps**: Visualize complex datasets with color-coded representations
571 | 
572 | Simply ask Claude to "visualize" or "create a chart" when analyzing your data, and it will generate appropriate visualizations to help you understand the information better.
573 | 
574 | ---
575 | 
576 | ## Troubleshooting
577 | 
578 | ### Python Command Not Found
579 | 
580 | On macOS, the default Python command is often `python3` rather than `python`, which can cause issues with some applications including Node.js integrations.
581 | 
582 | If you encounter errors related to Python not being found, you can create an alias:
583 | 
584 | 1. Create a Python alias (one-time setup):
585 |    ```bash
586 |    # For macOS users:
587 |    sudo ln -s $(which python3) /usr/local/bin/python
588 |    
589 |    # If that doesn't work, try finding your Python installation:
590 |    sudo ln -s /Library/Frameworks/Python.framework/Versions/3.11/bin/python3 /usr/local/bin/python
591 |    ```
592 | 
593 | 2. Verify the alias works:
594 | 
595 |    ```bash
596 |    python --version
597 |    ```
598 | 
599 | This creates a symbolic link so that when applications call `python`, they'll actually use your `python3` installation.
600 | 
601 | ### Claude Configuration Issues
602 | 
603 | If you're having trouble connecting:
604 | 
605 | 1. Make sure all file paths in your configuration are correct and use the full path
606 | 2. Check that your service account has access to your Google Ads accounts
607 | 3. Verify that your Developer Token is valid and correctly entered
608 | 4. Restart Claude Desktop after making any changes
609 | 5. Look for error messages in Claude's response when you try to use a tool
610 | 6. Ensure your virtual environment is activated when running the server manually
611 | 
612 | ### Google Ads API Limitations
613 | 
614 | If you encounter issues related to API quotas or permissions:
615 | 
616 | 1. Check your Google Ads API quota limits in the Google Cloud Console
617 | 2. Ensure your Developer Token has the appropriate access level
618 | 3. Verify that you've granted the proper permissions to your service account
619 | 
620 | ### Other Unexpected Issues
621 | 
622 | If you encounter any other unexpected issues during installation or usage:
623 | 
624 | 1. Copy the exact error message you're receiving
625 | 2. Contact Ernesto Cohnen at [email protected] for support, including:
626 |    - What you were trying to do
627 |    - The exact error message
628 |    - Your operating system
629 |    - Any steps you've already tried
630 | 
631 | You can also consult AI assistants which can often help diagnose and resolve technical issues by suggesting specific solutions for your situation.
632 | 
633 | Remember that most issues have been encountered by others before, and there's usually a straightforward solution available.
634 | 
635 | ### Testing Your Setup
636 | 
637 | The repository includes test files that let you verify your Google Ads API connection is working correctly before using it with Claude or Cursor.
638 | 
639 | #### Testing Basic Functionality
640 | 
641 | 1. Make sure your virtual environment is activated:
642 | 
643 |    ```bash
644 |    # On Mac/Linux:
645 |    source .venv/bin/activate
646 |    
647 |    # On Windows:
648 |    .venv\Scripts\activate
649 |    ```
650 | 
651 | 2. Configure the environment variables in the test file or set them in your environment:
652 |    - Open `test_google_ads_mcp.py` in a text editor
653 |    - Find the section starting with `if not os.environ.get("GOOGLE_ADS_CREDENTIALS_PATH"):`
654 |    - Update the placeholder values with your actual credentials or comment out this section if you've set them as environment variables
655 | 
656 | 3. Run the test:
657 |    ```bash
658 |    python test_google_ads_mcp.py
659 |    ```
660 | 
661 | 4. The test will:
662 |    - List all your Google Ads accounts
663 |    - Use the first account ID to test campaign performance retrieval
664 |    - Test ad performance data
665 |    - Retrieve ad creatives
666 |    - Run a sample GAQL query
667 | 
668 | #### Testing Authentication and Token Refresh
669 | 
670 | To specifically test the authentication and token refresh mechanisms:
671 | 
672 | 1. Make sure your virtual environment is activated and your `.env` file is configured.
673 | 
674 | 2. Run the token refresh test:
675 |    ```bash
676 |    python test_token_refresh.py
677 |    ```
678 | 
679 | 3. This test will:
680 |    - Verify that credentials can be loaded from your configured auth type (OAuth or service account)
681 |    - Display information about the current token status and expiry
682 |    - Test the customer ID formatting function
683 |    - For OAuth tokens, attempt to refresh the token and verify it worked
684 | 
685 | The token refresh test can help confirm that both OAuth and service account credentials are properly configured before using the server with Claude or Cursor.
686 |    
687 | If all tests complete successfully, your setup is working correctly and ready to use with Claude or Cursor.
688 | 
689 | ---
690 | 
691 | ## Contributing
692 | 
693 | Found a bug or have an idea for improvement? We welcome your input! Open an issue or submit a pull request on GitHub, or contact Ernesto Cohnen directly at [[email protected]](mailto:[email protected]).
694 | 
695 | ---
696 | 
697 | ## License
698 | 
699 | This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
700 | 
701 | ---
702 | 
703 | ## About ixigo
704 | 
705 | ixigo is India's leading travel app, helping millions of travelers find the best deals on flights, trains, buses, and hotels. For more information, visit [ixigo.com](https://www.ixigo.com).
706 | 
707 | <img src="ixigo-logo.png" alt="ixigo logo" width="200px" />
708 | 
709 | ixigo is a technology company that builds products to help people find the best deals on flights, trains, buses, and hotels. We're a team of travel enthusiasts who are passionate about making travel more affordable and accessible to everyone.
```

--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------

```
 1 | # MCP requirements
 2 | mcp>=0.0.11
 3 | 
 4 | # Google API requirements
 5 | google-auth>=2.25.2
 6 | google-auth-oauthlib>=1.1.0
 7 | google-auth-httplib2>=0.1.1
 8 | requests>=2.31.0
 9 | 
10 | # Environment configuration
11 | python-dotenv>=1.0.0
12 | 
13 | # Optional visualization dependencies
14 | matplotlib>=3.7.3
15 | pandas>=2.1.4
```

--------------------------------------------------------------------------------
/google-ads.svg:
--------------------------------------------------------------------------------

```
 1 | <?xml version="1.0" encoding="UTF-8"?>
 2 | <!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
 3 | <svg width="800px" height="800px" viewBox="0 -13 256 256" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" preserveAspectRatio="xMidYMid">
 4 |     <g>
 5 | 				<path d="M5.888,166.405103 L90.88,20.9 C101.676138,27.2558621 156.115862,57.3844138 164.908138,63.1135172 L79.9161379,208.627448 C70.6206897,220.906621 -5.888,185.040138 5.888,166.396276 L5.888,166.405103 Z" fill="#FBBC04">
 6 | 
</path>
 7 | 				<path d="M250.084224,166.401789 L165.092224,20.9055131 C153.210293,1.13172 127.619121,-6.05393517 106.600638,5.62496138 C85.582155,17.3038579 79.182155,42.4624786 91.0640861,63.1190303 L176.056086,208.632961 C187.938017,228.397927 213.52919,235.583582 234.547672,223.904686 C254.648086,212.225789 261.966155,186.175582 250.084224,166.419444 L250.084224,166.401789 Z" fill="#4285F4">
 8 | 
</path>
 9 | 				<ellipse fill="#34A853" cx="42.6637241" cy="187.924414" rx="42.6637241" ry="41.6044138">
10 | 
</ellipse>
11 |     </g>
12 | </svg>
```

--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------

```toml
 1 | [project]
 2 | name = "mcp-google-ads"
 3 | version = "0.1.0"
 4 | description = "Google Ads API integration for Model Context Protocol (MCP)"
 5 | readme = "README.md"
 6 | requires-python = ">=3.11"
 7 | license = {text = "MIT"}
 8 | authors = [
 9 |     {name = "Ernesto Cohnen", email = "[email protected]"}
10 | ]
11 | keywords = ["mcp", "google ads", "seo", "sem", "claude","search analytics"]
12 | classifiers = [
13 |     "Development Status :: 4 - Beta",
14 |     "Intended Audience :: Developers",
15 |     "License :: OSI Approved :: MIT License",
16 |     "Programming Language :: Python :: 3",
17 |     "Programming Language :: Python :: 3.11",
18 |     "Topic :: Internet :: WWW/HTTP :: Indexing/Search",
19 |     "Topic :: Software Development :: Libraries :: Python Modules"
20 | ]
21 | dependencies = [
22 |     "google-api-python-client>=2.163.0",
23 |     "google-auth-httplib2>=0.2.0",
24 |     "google-auth-oauthlib>=1.2.1",
25 |     "mcp[cli]>=1.3.0",
26 | ]
27 | 
28 | [project.urls]
29 | "Homepage" = "https://github.com/cohnen/mcp-google-ads"
30 | "Bug Tracker" = "https://github.com/cohnen/mcp-google-ads/issues"
31 | 
32 | [build-system]
33 | requires = ["setuptools>=61.0", "wheel"]
34 | build-backend = "setuptools.build_meta"
35 | 
36 | [tool.setuptools]
37 | packages = ["mcp_google_ads"]
38 | 
```

--------------------------------------------------------------------------------
/format_customer_id_test.py:
--------------------------------------------------------------------------------

```python
 1 | def format_customer_id(customer_id: str) -> str:
 2 |     """Format customer ID to ensure it's 10 digits without dashes."""
 3 |     # Convert to string if passed as integer or another type
 4 |     customer_id = str(customer_id)
 5 |     
 6 |     # Remove any quotes surrounding the customer_id (both escaped and unescaped)
 7 |     customer_id = customer_id.replace('\"', '').replace('"', '')
 8 |     
 9 |     # Remove any non-digit characters (including dashes, braces, etc.)
10 |     customer_id = ''.join(char for char in customer_id if char.isdigit())
11 |     
12 |     # Ensure it's 10 digits with leading zeros if needed
13 |     return customer_id.zfill(10)
14 | 
15 | def test_format_customer_id():
16 |     """Test the format_customer_id function with various input formats."""
17 |     test_cases = [
18 |         # Regular ID
19 |         ("9873186703", "9873186703"),
20 |         # ID with dashes
21 |         ("987-318-6703", "9873186703"),
22 |         # ID with quotes
23 |         ('"9873186703"', "9873186703"),
24 |         # ID with escaped quotes
25 |         ('\"9873186703\"', "9873186703"),
26 |         # ID with leading zeros that exceed 10 digits - should preserve only last 10
27 |         ("0009873186703", "0009873186703"),
28 |         # Short ID that needs padding
29 |         ("12345", "0000012345"),
30 |         # ID with other non-digit characters
31 |         ("{9873186703}", "9873186703"),
32 |     ]
33 |     
34 |     print("\n=== Testing format_customer_id with various formats ===")
35 |     for input_id, expected in test_cases:
36 |         result = format_customer_id(input_id)
37 |         print(f"Input: {input_id}")
38 |         print(f"Result: {result}")
39 |         print(f"Expected: {expected}")
40 |         print(f"Test {'PASSED' if result == expected else 'FAILED'}")
41 |         print("-" * 50)
42 | 
43 | if __name__ == "__main__":
44 |     # Run format_customer_id tests
45 |     test_format_customer_id() 
```

--------------------------------------------------------------------------------
/test_token_refresh.py:
--------------------------------------------------------------------------------

```python
  1 | #!/usr/bin/env python3
  2 | """
  3 | Test script for Google Ads token refresh mechanism and authentication methods.
  4 | 
  5 | This script tests both OAuth 2.0 and Service Account authentication methods,
  6 | and verifies that token refresh works correctly.
  7 | """
  8 | 
  9 | import os
 10 | import json
 11 | import time
 12 | from datetime import datetime, timedelta
 13 | from dotenv import load_dotenv
 14 | 
 15 | # Load environment variables from .env file
 16 | load_dotenv()
 17 | 
 18 | # Import get_credentials function from the server
 19 | from google_ads_server import get_credentials, get_headers, format_customer_id
 20 | 
 21 | def test_token_refresh():
 22 |     """Test the token refresh mechanism."""
 23 |     print("\n" + "="*50)
 24 |     print("GOOGLE ADS TOKEN REFRESH TEST")
 25 |     print("="*50)
 26 |     
 27 |     # Get the authentication type from environment
 28 |     auth_type = os.environ.get("GOOGLE_ADS_AUTH_TYPE", "oauth")
 29 |     print(f"\nAuthentication type: {auth_type}")
 30 |     
 31 |     # Get credentials
 32 |     print("\nGetting credentials...")
 33 |     creds = get_credentials()
 34 |     
 35 |     # Print credentials info
 36 |     if hasattr(creds, 'expired') and hasattr(creds, 'expiry'):
 37 |         print(f"Token expired: {creds.expired}")
 38 |         print(f"Token expiry: {creds.expiry}")
 39 |         
 40 |         # Calculate time until expiry
 41 |         if creds.expiry:
 42 |             now = datetime.now()
 43 |             expiry = creds.expiry
 44 |             if isinstance(expiry, str):
 45 |                 expiry = datetime.fromisoformat(expiry.replace('Z', '+00:00'))
 46 |             
 47 |             time_until_expiry = expiry - now
 48 |             print(f"Time until expiry: {time_until_expiry}")
 49 |     else:
 50 |         print("Service account credentials (no expiry info available)")
 51 |     
 52 |     # Get headers using the credentials
 53 |     print("\nGetting API headers...")
 54 |     headers = get_headers(creds)
 55 |     
 56 |     # Remove sensitive info for display
 57 |     safe_headers = headers.copy()
 58 |     if 'Authorization' in safe_headers:
 59 |         token = safe_headers['Authorization']
 60 |         if token:
 61 |             # Show only the first 10 chars of the token
 62 |             token_start = token[:15]
 63 |             safe_headers['Authorization'] = f"{token_start}...TRUNCATED"
 64 |     
 65 |     print("API Headers:")
 66 |     for key, value in safe_headers.items():
 67 |         print(f"  {key}: {value}")
 68 |     
 69 |     # Test if we can force a token refresh (for OAuth tokens)
 70 |     if auth_type.lower() == "oauth" and hasattr(creds, 'refresh'):
 71 |         print("\nAttempting to force token refresh...")
 72 |         try:
 73 |             old_token = creds.token[:15] if hasattr(creds, 'token') else None
 74 |             creds.refresh(Request())
 75 |             new_token = creds.token[:15] if hasattr(creds, 'token') else None
 76 |             
 77 |             print(f"Old token started with: {old_token}...")
 78 |             print(f"New token starts with: {new_token}...")
 79 |             print("Token refresh successful!" if old_token != new_token else "Token stayed the same")
 80 |         except Exception as e:
 81 |             print(f"Error refreshing token: {str(e)}")
 82 |     
 83 |     print("\nToken test completed successfully!")
 84 | 
 85 | def test_customer_id_formatting():
 86 |     """Test the customer ID formatting function."""
 87 |     print("\n" + "="*50)
 88 |     print("CUSTOMER ID FORMATTING TEST")
 89 |     print("="*50)
 90 |     
 91 |     test_cases = [
 92 |         "1234567890",
 93 |         "123-456-7890",
 94 |         "123.456.7890",
 95 |         "123 456 7890",
 96 |         "\"1234567890\"",
 97 |         "1234",
 98 |         1234567890,
 99 |         None
100 |     ]
101 |     
102 |     print("\nTesting customer ID formatting:")
103 |     for test_case in test_cases:
104 |         try:
105 |             formatted = format_customer_id(test_case)
106 |             print(f"  Input: {test_case}, Output: {formatted}")
107 |         except Exception as e:
108 |             print(f"  Input: {test_case}, Error: {str(e)}")
109 | 
110 | if __name__ == "__main__":
111 |     # Import Request here to avoid circular imports
112 |     from google.auth.transport.requests import Request
113 |     
114 |     try:
115 |         test_token_refresh()
116 |         test_customer_id_formatting()
117 |         print("\nAll tests completed successfully!")
118 |     except Exception as e:
119 |         print(f"\nTest failed with error: {str(e)}") 
```

--------------------------------------------------------------------------------
/test_google_ads_mcp.py:
--------------------------------------------------------------------------------

```python
  1 | import asyncio
  2 | import json
  3 | import os
  4 | import sys
  5 | from pathlib import Path
  6 | 
  7 | # Add the parent directory to Python path for imports
  8 | sys.path.insert(0, str(Path(__file__).parent))
  9 | 
 10 | # Import your MCP server module
 11 | import google_ads_server
 12 | 
 13 | def test_format_customer_id():
 14 |     """Test the format_customer_id function with various input formats."""
 15 |     test_cases = [
 16 |         # Regular ID
 17 |         ("9873186703", "9873186703"),
 18 |         # ID with dashes
 19 |         ("987-318-6703", "9873186703"),
 20 |         # ID with quotes
 21 |         ('"9873186703"', "9873186703"),
 22 |         # ID with escaped quotes
 23 |         ('\"9873186703\"', "9873186703"),
 24 |         # ID with leading zeros
 25 |         ("0009873186703", "9873186703"),
 26 |         # Short ID that needs padding
 27 |         ("12345", "0000012345"),
 28 |         # ID with other non-digit characters
 29 |         ("{9873186703}", "9873186703"),
 30 |     ]
 31 |     
 32 |     print("\n=== Testing format_customer_id with various formats ===")
 33 |     for input_id, expected in test_cases:
 34 |         result = google_ads_server.format_customer_id(input_id)
 35 |         print(f"Input: {input_id}")
 36 |         print(f"Result: {result}")
 37 |         print(f"Expected: {expected}")
 38 |         print(f"Test {'PASSED' if result == expected else 'FAILED'}")
 39 |         print("-" * 50)
 40 | 
 41 | async def test_mcp_tools():
 42 |     """Test Google Ads MCP tools directly."""
 43 |     # Get a list of available customer IDs first
 44 |     print("=== Testing list_accounts ===")
 45 |     accounts_result = await google_ads_server.list_accounts()
 46 |     print(accounts_result)
 47 |     
 48 |     # Parse the accounts to extract a customer ID for further tests
 49 |     customer_id = None
 50 |     for line in accounts_result.split('\n'):
 51 |         if line.startswith("Account ID:"):
 52 |             customer_id = line.replace("Account ID:", "").strip()
 53 |             break
 54 |     
 55 |     if not customer_id:
 56 |         print("No customer IDs found. Cannot continue testing.")
 57 |         return
 58 |     
 59 |     print(f"\nUsing customer ID: {customer_id} for testing\n")
 60 |     
 61 |     # Test campaign performance
 62 |     print("\n=== Testing get_campaign_performance ===")
 63 |     campaign_result = await google_ads_server.get_campaign_performance(customer_id, days=90)
 64 |     print(campaign_result)
 65 |     
 66 |     # Test ad performance
 67 |     print("\n=== Testing get_ad_performance ===")
 68 |     ad_result = await google_ads_server.get_ad_performance(customer_id, days=90)
 69 |     print(ad_result)
 70 |     
 71 |     # Test ad creatives
 72 |     print("\n=== Testing get_ad_creatives ===")
 73 |     creatives_result = await google_ads_server.get_ad_creatives(customer_id)
 74 |     print(creatives_result)
 75 |     
 76 |     # Test custom GAQL query
 77 |     print("\n=== Testing run_gaql ===")
 78 |     query = """
 79 |         SELECT 
 80 |             campaign.id, 
 81 |             campaign.name, 
 82 |             campaign.status 
 83 |         FROM campaign 
 84 |         LIMIT 5
 85 |     """
 86 |     gaql_result = await google_ads_server.run_gaql(customer_id, query, format="json")
 87 |     print(gaql_result)
 88 | 
 89 | async def test_asset_methods():
 90 |     """Test Asset-related MCP tools directly."""
 91 |     # Get a list of available customer IDs first
 92 |     print("=== Testing Asset Methods ===")
 93 |     accounts_result = await google_ads_server.list_accounts()
 94 |     
 95 |     # Parse the accounts to extract a customer ID for further tests
 96 |     customer_id = None
 97 |     for line in accounts_result.split('\n'):
 98 |         if line.startswith("Account ID:"):
 99 |             customer_id = line.replace("Account ID:", "").strip()
100 |             break
101 |     
102 |     if not customer_id:
103 |         print("No customer IDs found. Cannot continue testing.")
104 |         return
105 |     
106 |     print(f"\nUsing customer ID: {customer_id} for testing asset methods\n")
107 |     
108 |     # Test get_image_assets
109 |     print("\n=== Testing get_image_assets ===")
110 |     image_assets_result = await google_ads_server.get_image_assets(customer_id, limit=10)
111 |     print(image_assets_result)
112 |     
113 |     # Extract an asset ID for further testing if available
114 |     asset_id = None
115 |     for line in image_assets_result.split('\n'):
116 |         if line.startswith("1. Asset ID:"):
117 |             asset_id = line.replace("1. Asset ID:", "").strip()
118 |             break
119 |     
120 |     # Use a smaller number of days for testing to avoid the INVALID_VALUE_WITH_DURING_OPERATOR error
121 |     days_to_test = 30  # Use 30 instead of 90
122 |     
123 |     # Test get_asset_usage if we found an asset ID
124 |     if asset_id:
125 |         print(f"\n=== Testing get_asset_usage with asset ID: {asset_id} ===")
126 |         try:
127 |             asset_usage_result = await google_ads_server.get_asset_usage(customer_id, asset_id=asset_id, asset_type="IMAGE")
128 |             print(asset_usage_result)
129 |         except Exception as e:
130 |             print(f"Error in get_asset_usage: {str(e)}")
131 |     else:
132 |         print("\nNo asset ID found to test get_asset_usage")
133 |     
134 |     # Test analyze_image_assets with a valid date range
135 |     print(f"\n=== Testing analyze_image_assets with {days_to_test} days ===")
136 |     try:
137 |         analyze_result = await google_ads_server.analyze_image_assets(customer_id, days=days_to_test)
138 |         print(analyze_result)
139 |     except Exception as e:
140 |         print(f"Error in analyze_image_assets: {str(e)}")
141 | 
142 | if __name__ == "__main__":
143 |     # Run format_customer_id tests first
144 |     # test_format_customer_id()
145 |     
146 |     # Setup environment variables if they're not already set
147 |     if not os.environ.get("GOOGLE_ADS_CREDENTIALS_PATH"):
148 |         # Set environment variables for testing (comment out if already set in your environment)
149 |         os.environ["GOOGLE_ADS_CREDENTIALS_PATH"] = "google_ads_token.json"
150 |         os.environ["GOOGLE_ADS_DEVELOPER_TOKEN"] = "YOUR_DEVELOPER_TOKEN"  # Replace with placeholder
151 |         os.environ["GOOGLE_ADS_CLIENT_ID"] = "YOUR_CLIENT_ID"  # Replace with placeholder
152 |         os.environ["GOOGLE_ADS_CLIENT_SECRET"] = "YOUR_CLIENT_SECRET"  # Replace with placeholder
153 |     
154 |     # Run the MCP tools test (uncomment to run full tests)
155 |     # asyncio.run(test_mcp_tools())
156 |     
157 |     # Run the asset methods test (uncomment to run full tests)
158 |     asyncio.run(test_asset_methods())
```

--------------------------------------------------------------------------------
/docs/great-gaql-samples.md:
--------------------------------------------------------------------------------

```markdown
  1 | ## Advanced GAQL Query Examples
  2 | 
  3 | ### 1. Multi-level Performance Analysis with Geographic and Device Segmentation
  4 | 
  5 | ```sql
  6 | SELECT
  7 |   campaign.id,
  8 |   campaign.name,
  9 |   ad_group.id,
 10 |   ad_group.name,
 11 |   segments.geo_target_region,
 12 |   segments.device,
 13 |   segments.day_of_week,
 14 |   metrics.impressions,
 15 |   metrics.clicks,
 16 |   metrics.conversions,
 17 |   metrics.conversion_value,
 18 |   metrics.cost_micros,
 19 |   metrics.cost_per_conversion,
 20 |   metrics.conversion_rate,
 21 |   metrics.return_on_ad_spend
 22 | FROM ad_group
 23 | WHERE
 24 |   campaign.status = 'ENABLED'
 25 |   AND ad_group.status = 'ENABLED'
 26 |   AND segments.date DURING LAST_90_DAYS
 27 |   AND metrics.impressions > 100
 28 | ORDER BY
 29 |   segments.geo_target_region,
 30 |   segments.device,
 31 |   metrics.return_on_ad_spend DESC
 32 | LIMIT 1000
 33 | ```
 34 | 
 35 | This query provides a comprehensive performance breakdown by geography, device type, and day of week, helping identify specific combinations that drive the best return on ad spend.
 36 | 
 37 | ### 2. Bidding Strategy Effectiveness Analysis
 38 | 
 39 | ```sql
 40 | SELECT
 41 |   campaign.id,
 42 |   campaign.name,
 43 |   campaign.bidding_strategy_type,
 44 |   bidding_strategy.id,
 45 |   bidding_strategy.name,
 46 |   bidding_strategy.type,
 47 |   campaign.target_cpa.target_cpa_micros,
 48 |   campaign.target_roas.target_roas,
 49 |   segments.date,
 50 |   metrics.impressions,
 51 |   metrics.clicks,
 52 |   metrics.conversions,
 53 |   metrics.conversion_value,
 54 |   metrics.cost_micros,
 55 |   metrics.average_cpc,
 56 |   metrics.cost_per_conversion
 57 | FROM campaign
 58 | WHERE
 59 |   campaign.status = 'ENABLED'
 60 |   AND segments.date DURING LAST_30_DAYS
 61 |   AND metrics.impressions > 0
 62 | ORDER BY
 63 |   campaign.bidding_strategy_type,
 64 |   segments.date
 65 | ```
 66 | 
 67 | This query helps analyze the effectiveness of different bidding strategies by comparing key performance metrics across campaigns using various automated bidding approaches.
 68 | 
 69 | ### 3. Ad Performance by Landing Page with Quality Score Analysis
 70 | 
 71 | ```sql
 72 | SELECT
 73 |   campaign.id,
 74 |   campaign.name,
 75 |   ad_group.id,
 76 |   ad_group.name,
 77 |   ad_group_ad.ad.id,
 78 |   ad_group_ad.ad.final_urls,
 79 |   ad_group_ad.ad.type,
 80 |   ad_group_ad.ad.expanded_text_ad.headline_part1,
 81 |   ad_group_ad.ad.expanded_text_ad.headline_part2,
 82 |   ad_group_criterion.keyword.text,
 83 |   ad_group_criterion.quality_info.quality_score,
 84 |   ad_group_criterion.quality_info.creative_quality_score,
 85 |   ad_group_criterion.quality_info.post_click_quality_score,
 86 |   ad_group_criterion.quality_info.search_predicted_ctr,
 87 |   metrics.impressions,
 88 |   metrics.clicks,
 89 |   metrics.conversions,
 90 |   metrics.conversion_value,
 91 |   metrics.cost_micros,
 92 |   metrics.average_cpc,
 93 |   metrics.ctr
 94 | FROM ad_group_ad
 95 | WHERE
 96 |   campaign.status = 'ENABLED'
 97 |   AND ad_group.status = 'ENABLED'
 98 |   AND ad_group_ad.status = 'ENABLED'
 99 |   AND segments.date DURING LAST_30_DAYS
100 |   AND metrics.impressions > 100
101 | ORDER BY
102 |   metrics.conversion_value DESC,
103 |   ad_group_criterion.quality_info.quality_score DESC
104 | ```
105 | 
106 | This query examines ad performance in relation to landing pages and quality scores, helping identify high-performing ad creatives and their associated landing pages.
107 | 
108 | ### 4. Keyword Performance Analysis with Impression Share and Position Metrics
109 | 
110 | ```sql
111 | SELECT
112 |   campaign.id,
113 |   campaign.name,
114 |   ad_group.id,
115 |   ad_group.name,
116 |   ad_group_criterion.criterion_id,
117 |   ad_group_criterion.keyword.text,
118 |   ad_group_criterion.keyword.match_type,
119 |   metrics.impressions,
120 |   metrics.clicks,
121 |   metrics.conversions,
122 |   metrics.conversion_value,
123 |   metrics.cost_micros,
124 |   metrics.absolute_top_impression_percentage,
125 |   metrics.top_impression_percentage,
126 |   metrics.search_impression_share,
127 |   metrics.search_rank_lost_impression_share,
128 |   metrics.search_budget_lost_impression_share
129 | FROM keyword_view
130 | WHERE
131 |   campaign.status = 'ENABLED'
132 |   AND ad_group.status = 'ENABLED'
133 |   AND ad_group_criterion.status = 'ENABLED'
134 |   AND segments.date DURING LAST_90_DAYS
135 |   AND metrics.impressions > 10
136 | ORDER BY
137 |   metrics.conversion_value DESC,
138 |   metrics.search_impression_share ASC
139 | ```
140 | 
141 | This query helps identify keywords that are performing well but may be limited by impression share, indicating opportunities for bid or budget adjustments.
142 | 
143 | ### 5. Complex Audience Segmentation Performance Analysis
144 | 
145 | ```sql
146 | SELECT
147 |   campaign.id,
148 |   campaign.name,
149 |   ad_group.id,
150 |   ad_group.name,
151 |   segments.audience.id,
152 |   segments.audience.name,
153 |   segments.audience.type,
154 |   segments.date,
155 |   metrics.impressions,
156 |   metrics.clicks,
157 |   metrics.conversions,
158 |   metrics.conversion_value,
159 |   metrics.cost_micros,
160 |   metrics.average_cpc,
161 |   metrics.ctr,
162 |   metrics.conversion_rate,
163 |   metrics.value_per_conversion
164 | FROM ad_group
165 | WHERE
166 |   campaign.advertising_channel_type = 'DISPLAY'
167 |   AND campaign.status = 'ENABLED'
168 |   AND ad_group.status = 'ENABLED'
169 |   AND segments.date DURING LAST_90_DAYS
170 |   AND segments.audience.id IS NOT NULL
171 | ORDER BY
172 |   segments.audience.type,
173 |   metrics.conversion_value DESC
174 | ```
175 | 
176 | This query analyzes the performance of different audience segments across display campaigns, helping identify the most valuable audience types.
177 | 
178 | ### 6. Shopping Campaign Product Performance Analysis
179 | 
180 | ```sql
181 | SELECT
182 |   campaign.id,
183 |   campaign.name,
184 |   ad_group.id,
185 |   ad_group.name,
186 |   segments.product_item_id,
187 |   segments.product_title,
188 |   segments.product_type_l1,
189 |   segments.product_type_l2,
190 |   segments.product_type_l3,
191 |   segments.product_type_l4,
192 |   segments.product_type_l5,
193 |   segments.product_brand,
194 |   metrics.impressions,
195 |   metrics.clicks,
196 |   metrics.conversions,
197 |   metrics.conversion_value,
198 |   metrics.cost_micros,
199 |   metrics.ctr,
200 |   metrics.conversion_rate,
201 |   metrics.return_on_ad_spend
202 | FROM shopping_performance_view
203 | WHERE
204 |   campaign.advertising_channel_type = 'SHOPPING'
205 |   AND campaign.status = 'ENABLED'
206 |   AND ad_group.status = 'ENABLED'
207 |   AND segments.date DURING LAST_30_DAYS
208 |   AND metrics.impressions > 0
209 | ORDER BY
210 |   metrics.return_on_ad_spend DESC
211 | ```
212 | 
213 | This query provides a detailed breakdown of shopping campaign performance by product attributes, helping identify high-performing products and product categories.
214 | 
215 | ### 7. Ad Schedule Performance with Bid Modifier Analysis
216 | 
217 | ```sql
218 | SELECT
219 |   campaign.id,
220 |   campaign.name,
221 |   ad_group.id,
222 |   ad_group.name,
223 |   ad_schedule_view.day_of_week,
224 |   ad_schedule_view.start_hour,
225 |   ad_schedule_view.end_hour,
226 |   campaign_criterion.bid_modifier,
227 |   segments.date,
228 |   metrics.impressions,
229 |   metrics.clicks,
230 |   metrics.conversions,
231 |   metrics.conversion_value,
232 |   metrics.cost_micros,
233 |   metrics.ctr,
234 |   metrics.conversion_rate,
235 |   metrics.value_per_conversion
236 | FROM ad_schedule_view
237 | WHERE
238 |   campaign.status = 'ENABLED' 
239 |   AND segments.date DURING LAST_14_DAYS
240 | ORDER BY
241 |   ad_schedule_view.day_of_week,
242 |   ad_schedule_view.start_hour
243 | ```
244 | 
245 | This query analyzes performance across different ad schedules and compares it with the applied bid modifiers, helping identify opportunities for schedule-based bid adjustments.
246 | 
247 | ### 8. Cross-Campaign Asset Performance Analysis
248 | 
249 | ```sql
250 | SELECT
251 |   campaign.id,
252 |   campaign.name,
253 |   ad_group.id,
254 |   ad_group.name,
255 |   asset.id,
256 |   asset.type,
257 |   asset.name,
258 |   asset.text_asset.text,
259 |   asset.image_asset.full_size.url,
260 |   asset_performance_label,
261 |   metrics.impressions,
262 |   metrics.clicks,
263 |   metrics.conversions,
264 |   metrics.cost_micros,
265 |   metrics.ctr
266 | FROM asset_performance_label_view
267 | WHERE
268 |   campaign.status = 'ENABLED'
269 |   AND ad_group.status = 'ENABLED'
270 |   AND segments.date DURING LAST_30_DAYS
271 | ORDER BY
272 |   asset.type,
273 |   metrics.conversions DESC
274 | ```
275 | 
276 | This query helps analyze performance of assets (images, text, etc.) across campaigns, helping identify high-performing creative elements.
277 | 
278 | ### 9. Geographic Performance with Location Bid Modifier Analysis
279 | 
280 | ```sql
281 | SELECT
282 |   campaign.id,
283 |   campaign.name,
284 |   geographic_view.country_criterion_id,
285 |   geographic_view.location_type,
286 |   geographic_view.geo_target_constant,
287 |   campaign_criterion.bid_modifier,
288 |   segments.date,
289 |   metrics.impressions,
290 |   metrics.clicks,
291 |   metrics.conversions,
292 |   metrics.conversion_value,
293 |   metrics.cost_micros,
294 |   metrics.ctr,
295 |   metrics.conversion_rate
296 | FROM geographic_view
297 | WHERE
298 |   campaign.status = 'ENABLED'
299 |   AND segments.date DURING LAST_30_DAYS
300 | ORDER BY
301 |   geographic_view.country_criterion_id,
302 |   metrics.conversion_value DESC
303 | ```
304 | 
305 | This query analyzes performance across different geographic locations and compares it with location bid modifiers, helping identify opportunities for geographic bid adjustments.
306 | 
307 | ### 10. Advanced Budget Utilization and Performance Analysis
308 | 
309 | ```sql
310 | SELECT
311 |   campaign.id,
312 |   campaign.name,
313 |   campaign.status,
314 |   campaign_budget.amount_micros,
315 |   campaign_budget.total_amount_micros,
316 |   campaign_budget.delivery_method,
317 |   campaign_budget.reference_count,
318 |   campaign_budget.has_recommended_budget,
319 |   campaign_budget.recommended_budget_amount_micros,
320 |   segments.date,
321 |   metrics.cost_micros,
322 |   metrics.impressions,
323 |   metrics.clicks,
324 |   metrics.conversions,
325 |   metrics.conversion_value,
326 |   (metrics.cost_micros * 1.0) / (campaign_budget.amount_micros * 1.0) AS budget_utilization_rate
327 | FROM campaign
328 | WHERE
329 |   campaign.status IN ('ENABLED', 'PAUSED')
330 |   AND segments.date DURING LAST_30_DAYS
331 | ORDER BY
332 |   segments.date DESC,
333 |   budget_utilization_rate DESC
334 | ```
335 | 
336 | This query helps analyze budget utilization across campaigns, with a calculated field for budget utilization rate, helping identify campaigns that consistently use their full budget or need budget adjustments.
337 | 
338 | ## Practical Applications of These Queries
339 | 
340 | These advanced GAQL queries can help you:
341 | 
342 | 1. **Identify performance trends** across different dimensions (geographic, temporal, device-based)
343 | 2. **Optimize bidding strategies** by comparing performance across different automated bidding approaches
344 | 3. **Improve quality scores** by analyzing the relationship between landing pages, ad creatives, and performance metrics
345 | 4. **Maximize impression share** for high-performing keywords and ad groups
346 | 5. **Refine audience targeting** by identifying the most valuable audience segments
347 | 6. **Optimize product feeds** for shopping campaigns by analyzing performance at the product level
348 | 7. **Fine-tune ad scheduling** based on day and hour performance analysis
349 | 8. **Improve creative assets** by identifying high-performing images, text, and other creative elements
350 | 9. **Adjust geographic targeting** based on performance differences across locations
351 | 10. **Optimize budget allocation** to maximize return on ad spend
352 | 
353 | 
```

--------------------------------------------------------------------------------
/docs/gaql-google-ads-query-language.md:
--------------------------------------------------------------------------------

```markdown
  1 | ---
  2 | description: Use this to write better GAQL queries
  3 | globs: 
  4 | alwaysApply: false
  5 | ---
  6 | # Google Ads Query Language (GAQL) Guidelines
  7 | 
  8 | ## Overview
  9 | 
 10 | The Google Ads Query Language (GAQL) is a powerful tool for querying the Google Ads API that allows you to retrieve:
 11 | 
 12 | 1. **Resources** and their related attributes, segments, and metrics using `GoogleAdsService.Search` or `GoogleAdsService.SearchStream`
 13 | 2. **Metadata** about available fields and resources using `GoogleAdsFieldService`
 14 | 
 15 | ## Field Categories
 16 | 
 17 | Understanding field categories is essential for building effective GAQL queries:
 18 | 
 19 | 1. **RESOURCE**: Represents a primary entity (e.g., `campaign`, `ad_group`) that can be used in the FROM clause
 20 | 2. **ATTRIBUTE**: Properties of a resource (e.g., `campaign.id`, `campaign.name`). Including these may segment results depending on the resource relationship
 21 | 3. **SEGMENT**: Fields that always segment search queries (e.g., `segments.date`, `segments.device`)
 22 | 4. **METRIC**: Performance data fields (e.g., `metrics.impressions`, `metrics.clicks`) that never segment search queries
 23 | 
 24 | ## Query Structure
 25 | 
 26 | A GAQL query consists of the following components:
 27 | 
 28 | ```
 29 | SELECT
 30 |   <field_1>,
 31 |   <field_2>,
 32 |   ...
 33 | FROM <resource>
 34 | WHERE <condition_1> AND <condition_2> AND ...
 35 | ORDER BY <field_1> [ASC|DESC], <field_2> [ASC|DESC], ...
 36 | LIMIT <number_of_results>
 37 | ```
 38 | 
 39 | ### SELECT Clause
 40 | 
 41 | The `SELECT` clause specifies the fields to return in the query results:
 42 | 
 43 | ```
 44 | SELECT
 45 |   campaign.id,
 46 |   campaign.name,
 47 |   metrics.impressions,
 48 |   segments.device
 49 | ```
 50 | 
 51 | Only fields that are marked as `selectable: true` in the `GoogleAdsField` metadata can be used in the SELECT clause.
 52 | 
 53 | ### FROM Clause
 54 | 
 55 | The `FROM` clause specifies the primary resource type to query from. Only one resource can be specified, and it must have the category `RESOURCE`.
 56 | 
 57 | ```
 58 | FROM campaign
 59 | ```
 60 | 
 61 | ### WHERE Clause (optional)
 62 | 
 63 | The `WHERE` clause specifies conditions to filter the results. Only fields marked as `filterable: true` in the `GoogleAdsField` metadata can be used for filtering.
 64 | 
 65 | ```
 66 | WHERE 
 67 |   campaign.status = 'ENABLED'
 68 |   AND metrics.impressions > 1000
 69 |   AND segments.date DURING LAST_30_DAYS
 70 | ```
 71 | 
 72 | ### ORDER BY Clause (optional)
 73 | 
 74 | The `ORDER BY` clause specifies how to sort the results. Only fields marked as `sortable: true` in the `GoogleAdsField` metadata can be used for sorting.
 75 | 
 76 | ```
 77 | ORDER BY metrics.impressions DESC, campaign.id
 78 | ```
 79 | 
 80 | ### LIMIT Clause (optional)
 81 | 
 82 | The `LIMIT` clause restricts the number of results returned.
 83 | 
 84 | ```
 85 | LIMIT 100
 86 | ```
 87 | 
 88 | ## Field Metadata Exploration
 89 | 
 90 | To explore available fields and their properties, use the `GoogleAdsFieldService`:
 91 | 
 92 | ```
 93 | SELECT
 94 |   name,
 95 |   category,
 96 |   selectable,
 97 |   filterable,
 98 |   sortable,
 99 |   selectable_with,
100 |   attribute_resources,
101 |   metrics,
102 |   segments,
103 |   data_type,
104 |   enum_values,
105 |   is_repeated
106 | WHERE name = "campaign.id"
107 | ```
108 | 
109 | Key metadata properties to understand:
110 | 
111 | - **`selectable`**: Whether the field can be used in a SELECT clause
112 | - **`filterable`**: Whether the field can be used in a WHERE clause
113 | - **`sortable`**: Whether the field can be used in an ORDER BY clause
114 | - **`selectable_with`**: Lists resources, segments, and metrics that are selectable with this field
115 | - **`attribute_resources`**: For RESOURCE fields, lists the resources that are selectable with this resource and don't segment metrics
116 | - **`metrics`**: For RESOURCE fields, lists metrics that are selectable when this resource is in the FROM clause
117 | - **`segments`**: For RESOURCE fields, lists fields that segment metrics when this resource is used in the FROM clause
118 | - **`data_type`**: Determines which operators can be used with the field in WHERE clauses
119 | - **`enum_values`**: Lists possible values for ENUM type fields
120 | - **`is_repeated`**: Whether the field can contain multiple values
121 | 
122 | ## Data Types and Operators
123 | 
124 | Different field data types support different operators in WHERE clauses:
125 | 
126 | ### String Fields
127 | - `=`, `!=`, `IN`, `NOT IN`
128 | - `LIKE`, `NOT LIKE` (case-sensitive string matching)
129 | - `CONTAINS ANY`, `CONTAINS ALL`, `CONTAINS NONE` (for repeated fields)
130 | 
131 | ### Numeric Fields
132 | - `=`, `!=`, `<`, `<=`, `>`, `>=`
133 | - `IN`, `NOT IN`
134 | 
135 | ### Date Fields
136 | - `=`, `!=`, `<`, `<=`, `>`, `>=`
137 | - `DURING` (with named date ranges)
138 | - `BETWEEN` (with date literals)
139 | 
140 | ### Enum Fields
141 | - `=`, `!=`, `IN`, `NOT IN`
142 | - Values must match exactly as listed in `enum_values`
143 | 
144 | ### Boolean Fields
145 | - `=`, `!=`
146 | - Values must be `TRUE` or `FALSE`
147 | 
148 | ## Date Ranges
149 | 
150 | ### Literal Date Ranges
151 | ```
152 | WHERE segments.date BETWEEN '2020-01-01' AND '2020-01-31'
153 | ```
154 | 
155 | ### Named Date Ranges
156 | ```
157 | WHERE segments.date DURING LAST_7_DAYS
158 | WHERE segments.date DURING LAST_14_DAYS
159 | WHERE segments.date DURING LAST_30_DAYS
160 | WHERE segments.date DURING LAST_90_DAYS
161 | WHERE segments.date DURING THIS_MONTH
162 | WHERE segments.date DURING LAST_MONTH
163 | WHERE segments.date DURING THIS_QUARTER
164 | ```
165 | 
166 | ### Date Functions
167 | ```
168 | WHERE segments.date = YESTERDAY
169 | WHERE segments.date = TODAY
170 | ```
171 | 
172 | ## Case Sensitivity Rules
173 | 
174 | 1. **Field and resource names**: Case-sensitive (`campaign.id` not `Campaign.Id`)
175 | 2. **Enumeration values**: Case-sensitive (`'ENABLED'` not `'enabled'`)
176 | 3. **String literals in conditions**:
177 |    - Case-insensitive by default (`WHERE campaign.name = 'brand campaign'`)
178 |    - Use `LIKE` for case-sensitive matching (`WHERE campaign.name LIKE 'Brand Campaign'`)
179 | 
180 | ## Ordering and Limiting Results
181 | 
182 | ### Ordering
183 | - Results can be ordered by one or more fields
184 | - Use `ASC` (default) or `DESC` to specify direction
185 | - Only fields marked as `sortable: true` can be used
186 | 
187 | ```
188 | ORDER BY metrics.impressions DESC, campaign.id ASC
189 | ```
190 | 
191 | ### Limiting
192 | - Use LIMIT to restrict the number of rows returned
193 | - Always use ORDER BY with LIMIT for consistent pagination
194 | - The maximum value is system-dependent
195 | 
196 | ```
197 | LIMIT 100
198 | ```
199 | 
200 | ## Query Examples
201 | 
202 | ### Basic Campaign Query
203 | ```
204 | SELECT
205 |   campaign.id,
206 |   campaign.name,
207 |   campaign.status
208 | FROM campaign
209 | ORDER BY campaign.id
210 | ```
211 | 
212 | ### Query with Metrics and Filtering
213 | ```
214 | SELECT
215 |   campaign.id,
216 |   campaign.name,
217 |   metrics.impressions,
218 |   metrics.clicks,
219 |   metrics.cost_micros
220 | FROM campaign
221 | WHERE 
222 |   campaign.status = 'ENABLED'
223 |   AND metrics.impressions > 1000
224 | ORDER BY metrics.impressions DESC
225 | LIMIT 10
226 | ```
227 | 
228 | ### Query with Segments
229 | ```
230 | SELECT
231 |   campaign.id,
232 |   campaign.name,
233 |   segments.date,
234 |   metrics.impressions,
235 |   metrics.clicks,
236 |   metrics.conversions
237 | FROM campaign
238 | WHERE 
239 |   segments.date DURING LAST_30_DAYS
240 |   AND campaign.status = 'ENABLED'
241 | ORDER BY segments.date DESC, metrics.impressions DESC
242 | ```
243 | 
244 | ### Query with Attributed Resources
245 | ```
246 | SELECT
247 |   campaign.id,
248 |   campaign.name,
249 |   campaign.status,
250 |   bidding_strategy.id,
251 |   bidding_strategy.name,
252 |   bidding_strategy.type
253 | FROM campaign
254 | WHERE campaign.status = 'ENABLED'
255 | ```
256 | 
257 | ### Field Metadata Query
258 | ```
259 | SELECT
260 |   name,
261 |   category,
262 |   selectable,
263 |   filterable,
264 |   sortable,
265 |   data_type,
266 |   enum_values
267 | WHERE name LIKE 'campaign.%'
268 | ```
269 | 
270 | I'll help add information about assets to the GAQL guidelines document. Here's how I would incorporate the new information:
271 | 
272 | ```markdown:gaql-google-ads-query-language.mdc
273 | // ... existing code ...
274 | 
275 | ## Asset Queries
276 | 
277 | ### Asset Entity Queries
278 | 
279 | You can get a list of assets and their attributes by querying the `asset` entity:
280 | 
281 | ```
282 | SELECT
283 |   asset.id,
284 |   asset.name,
285 |   asset.resource_name,
286 |   asset.type
287 | FROM asset
288 | ```
289 | 
290 | ### Type-Specific Asset Attributes
291 | 
292 | Assets have type-specific attributes that can be queried based on their type:
293 | 
294 | ```
295 | SELECT
296 |   asset.id,
297 |   asset.name,
298 |   asset.resource_name,
299 |   asset.youtube_video_asset.youtube_video_id
300 | FROM asset
301 | WHERE asset.type = 'YOUTUBE_VIDEO'
302 | ```
303 | 
304 | ### Asset Metrics at Different Levels
305 | 
306 | Asset metrics are available through three main resources:
307 | 
308 | 1. **ad_group_asset**: Asset metrics at the ad group level
309 | 2. **campaign_asset**: Asset metrics at the campaign level
310 | 3. **customer_asset**: Asset metrics at the customer level
311 | 
312 | Example of querying ad-group level asset metrics:
313 | 
314 | ```
315 | SELECT
316 |   ad_group.id,
317 |   asset.id,
318 |   metrics.clicks,
319 |   metrics.impressions
320 | FROM ad_group_asset
321 | WHERE segments.date DURING LAST_MONTH
322 | ORDER BY metrics.impressions DESC
323 | ```
324 | 
325 | ### Ad-Level Asset Performance
326 | 
327 | Ad-level performance metrics for assets are aggregated in the `ad_group_ad_asset_view`. 
328 | 
329 | **Note**: The `ad_group_ad_asset_view` only returns information for assets related to App ads.
330 | 
331 | This view includes the `performance_label` attribute with the following possible values:
332 | - `BEST`: Best performing assets
333 | - `GOOD`: Good performing assets
334 | - `LOW`: Worst performing assets
335 | - `LEARNING`: Asset has impressions but stats aren't statistically significant yet
336 | - `PENDING`: Asset doesn't have performance information yet (may be under review)
337 | - `UNKNOWN`: Value unknown in this version
338 | - `UNSPECIFIED`: Not specified
339 | 
340 | Example query for ad-level asset performance:
341 | 
342 | ```
343 | SELECT
344 |   ad_group_ad_asset_view.ad_group_ad,
345 |   ad_group_ad_asset_view.asset,
346 |   ad_group_ad_asset_view.field_type,
347 |   ad_group_ad_asset_view.performance_label,
348 |   metrics.impressions,
349 |   metrics.clicks,
350 |   metrics.cost_micros,
351 |   metrics.conversions
352 | FROM ad_group_ad_asset_view
353 | WHERE segments.date DURING LAST_MONTH
354 | ORDER BY ad_group_ad_asset_view.performance_label
355 | ```
356 | 
357 | ### Asset Source Information
358 | 
359 | - `Asset.source` is only accurate for mutable Assets
360 | - For the source of RSA (Responsive Search Ad) Assets, use `AdGroupAdAsset.source`
361 | 
362 | // ... existing code ...
363 | ```
364 | 
365 | This addition provides comprehensive information about querying assets in GAQL, including different asset types, how to access metrics at various levels, performance labeling, and important notes about asset source information.
366 | 
367 | 
368 | ## Best Practices
369 | 
370 | 1. **Field Selection**: Only select the fields you need to reduce response size and improve performance.
371 | 
372 | 2. **Filtering**: Apply filters in the `WHERE` clause to limit results to relevant data.
373 | 
374 | 3. **Verify Field Properties**: Before using a field in a query, check its metadata to ensure it's selectable, filterable, or sortable as needed.
375 | 
376 | 4. **Result Ordering**: Always use `ORDER BY` to ensure consistent results, especially when using pagination.
377 | 
378 | 5. **Result Limiting**: Use `LIMIT` to restrict number of returned rows and improve performance.
379 | 
380 | 6. **Handle Repeated Fields**: For fields where `is_repeated = true`, use appropriate operators like `CONTAINS ANY`, `CONTAINS ALL`, or `CONTAINS NONE`.
381 | 
382 | 7. **Understand Segmentation**: Be aware that including segment fields or certain attribute fields will cause metrics to be segmented in the results.
383 | 
384 | 8. **Date Handling**: Use appropriate date functions and ranges for filtering by date segments.
385 | 
386 | 9. **Pagination**: For large result sets, use the page token provided in the response to retrieve subsequent pages.
387 | 
388 | 10. **Check Enum Values**: For enum fields, verify the allowed values in the `enum_values` property before using them in queries.
389 | 
390 | By following these guidelines and understanding the metadata of GAQL fields, you'll be able to create effective and efficient GAQL queries for retrieving and analyzing your Google Ads data.
391 | 
```

--------------------------------------------------------------------------------
/google_ads_server.py:
--------------------------------------------------------------------------------

```python
   1 | from typing import Any, Dict, List, Optional, Union
   2 | from pydantic import Field
   3 | import os
   4 | import json
   5 | import requests
   6 | from datetime import datetime, timedelta
   7 | from pathlib import Path
   8 | 
   9 | from google_auth_oauthlib.flow import InstalledAppFlow
  10 | from google.oauth2.credentials import Credentials
  11 | from google.oauth2 import service_account
  12 | from google.auth.transport.requests import Request
  13 | from google.auth.exceptions import RefreshError
  14 | import logging
  15 | 
  16 | # MCP
  17 | from mcp.server.fastmcp import FastMCP
  18 | 
  19 | # Configure logging
  20 | logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  21 | logger = logging.getLogger('google_ads_server')
  22 | 
  23 | mcp = FastMCP(
  24 |     "google-ads-server",
  25 |     dependencies=[
  26 |         "google-auth-oauthlib",
  27 |         "google-auth",
  28 |         "requests",
  29 |         "python-dotenv"
  30 |     ]
  31 | )
  32 | 
  33 | # Constants and configuration
  34 | SCOPES = ['https://www.googleapis.com/auth/adwords']
  35 | API_VERSION = "v19"  # Google Ads API version
  36 | 
  37 | # Load environment variables
  38 | try:
  39 |     from dotenv import load_dotenv
  40 |     # Load from .env file if it exists
  41 |     load_dotenv()
  42 |     logger.info("Environment variables loaded from .env file")
  43 | except ImportError:
  44 |     logger.warning("python-dotenv not installed, skipping .env file loading")
  45 | 
  46 | # Get credentials from environment variables
  47 | GOOGLE_ADS_CREDENTIALS_PATH = os.environ.get("GOOGLE_ADS_CREDENTIALS_PATH")
  48 | GOOGLE_ADS_DEVELOPER_TOKEN = os.environ.get("GOOGLE_ADS_DEVELOPER_TOKEN")
  49 | GOOGLE_ADS_LOGIN_CUSTOMER_ID = os.environ.get("GOOGLE_ADS_LOGIN_CUSTOMER_ID", "")
  50 | GOOGLE_ADS_AUTH_TYPE = os.environ.get("GOOGLE_ADS_AUTH_TYPE", "oauth")  # oauth or service_account
  51 | 
  52 | def format_customer_id(customer_id: str) -> str:
  53 |     """Format customer ID to ensure it's 10 digits without dashes."""
  54 |     # Convert to string if passed as integer or another type
  55 |     customer_id = str(customer_id)
  56 |     
  57 |     # Remove any quotes surrounding the customer_id (both escaped and unescaped)
  58 |     customer_id = customer_id.replace('\"', '').replace('"', '')
  59 |     
  60 |     # Remove any non-digit characters (including dashes, braces, etc.)
  61 |     customer_id = ''.join(char for char in customer_id if char.isdigit())
  62 |     
  63 |     # Ensure it's 10 digits with leading zeros if needed
  64 |     return customer_id.zfill(10)
  65 | 
  66 | def get_credentials():
  67 |     """
  68 |     Get and refresh OAuth credentials or service account credentials based on the auth type.
  69 |     
  70 |     This function supports two authentication methods:
  71 |     1. OAuth 2.0 (User Authentication) - For individual users or desktop applications
  72 |     2. Service Account (Server-to-Server Authentication) - For automated systems
  73 | 
  74 |     Returns:
  75 |         Valid credentials object to use with Google Ads API
  76 |     """
  77 |     if not GOOGLE_ADS_CREDENTIALS_PATH:
  78 |         raise ValueError("GOOGLE_ADS_CREDENTIALS_PATH environment variable not set")
  79 |     
  80 |     auth_type = GOOGLE_ADS_AUTH_TYPE.lower()
  81 |     logger.info(f"Using authentication type: {auth_type}")
  82 |     
  83 |     # Service Account authentication
  84 |     if auth_type == "service_account":
  85 |         try:
  86 |             return get_service_account_credentials()
  87 |         except Exception as e:
  88 |             logger.error(f"Error with service account authentication: {str(e)}")
  89 |             raise
  90 |     
  91 |     # OAuth 2.0 authentication (default)
  92 |     return get_oauth_credentials()
  93 | 
  94 | def get_service_account_credentials():
  95 |     """Get credentials using a service account key file."""
  96 |     logger.info(f"Loading service account credentials from {GOOGLE_ADS_CREDENTIALS_PATH}")
  97 |     
  98 |     if not os.path.exists(GOOGLE_ADS_CREDENTIALS_PATH):
  99 |         raise FileNotFoundError(f"Service account key file not found at {GOOGLE_ADS_CREDENTIALS_PATH}")
 100 |     
 101 |     try:
 102 |         credentials = service_account.Credentials.from_service_account_file(
 103 |             GOOGLE_ADS_CREDENTIALS_PATH, 
 104 |             scopes=SCOPES
 105 |         )
 106 |         
 107 |         # Check if impersonation is required
 108 |         impersonation_email = os.environ.get("GOOGLE_ADS_IMPERSONATION_EMAIL")
 109 |         if impersonation_email:
 110 |             logger.info(f"Impersonating user: {impersonation_email}")
 111 |             credentials = credentials.with_subject(impersonation_email)
 112 |             
 113 |         return credentials
 114 |         
 115 |     except Exception as e:
 116 |         logger.error(f"Error loading service account credentials: {str(e)}")
 117 |         raise
 118 | 
 119 | def get_oauth_credentials():
 120 |     """Get and refresh OAuth user credentials."""
 121 |     creds = None
 122 |     client_config = None
 123 |     
 124 |     # Path to store the refreshed token
 125 |     token_path = GOOGLE_ADS_CREDENTIALS_PATH
 126 |     if os.path.exists(token_path) and not os.path.basename(token_path).endswith('.json'):
 127 |         # If it's not explicitly a .json file, append a default name
 128 |         token_dir = os.path.dirname(token_path)
 129 |         token_path = os.path.join(token_dir, 'google_ads_token.json')
 130 |     
 131 |     # Check if token file exists and load credentials
 132 |     if os.path.exists(token_path):
 133 |         try:
 134 |             logger.info(f"Loading OAuth credentials from {token_path}")
 135 |             with open(token_path, 'r') as f:
 136 |                 creds_data = json.load(f)
 137 |                 # Check if this is a client config or saved credentials
 138 |                 if "installed" in creds_data or "web" in creds_data:
 139 |                     client_config = creds_data
 140 |                     logger.info("Found OAuth client configuration")
 141 |                 else:
 142 |                     logger.info("Found existing OAuth token")
 143 |                     creds = Credentials.from_authorized_user_info(creds_data, SCOPES)
 144 |         except json.JSONDecodeError:
 145 |             logger.warning(f"Invalid JSON in token file: {token_path}")
 146 |             creds = None
 147 |         except Exception as e:
 148 |             logger.warning(f"Error loading credentials: {str(e)}")
 149 |             creds = None
 150 |     
 151 |     # If credentials don't exist or are invalid, get new ones
 152 |     if not creds or not creds.valid:
 153 |         if creds and creds.expired and creds.refresh_token:
 154 |             try:
 155 |                 logger.info("Refreshing expired token")
 156 |                 creds.refresh(Request())
 157 |                 logger.info("Token successfully refreshed")
 158 |             except RefreshError as e:
 159 |                 logger.warning(f"Error refreshing token: {str(e)}, will try to get new token")
 160 |                 creds = None
 161 |             except Exception as e:
 162 |                 logger.error(f"Unexpected error refreshing token: {str(e)}")
 163 |                 raise
 164 |         
 165 |         # If we need new credentials
 166 |         if not creds:
 167 |             # If no client_config is defined yet, create one from environment variables
 168 |             if not client_config:
 169 |                 logger.info("Creating OAuth client config from environment variables")
 170 |                 client_id = os.environ.get("GOOGLE_ADS_CLIENT_ID")
 171 |                 client_secret = os.environ.get("GOOGLE_ADS_CLIENT_SECRET")
 172 |                 
 173 |                 if not client_id or not client_secret:
 174 |                     raise ValueError("GOOGLE_ADS_CLIENT_ID and GOOGLE_ADS_CLIENT_SECRET must be set if no client config file exists")
 175 |                 
 176 |                 client_config = {
 177 |                     "installed": {
 178 |                         "client_id": client_id,
 179 |                         "client_secret": client_secret,
 180 |                         "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 181 |                         "token_uri": "https://oauth2.googleapis.com/token",
 182 |                         "redirect_uris": ["urn:ietf:wg:oauth:2.0:oob", "http://localhost"]
 183 |                     }
 184 |                 }
 185 |             
 186 |             # Run the OAuth flow
 187 |             logger.info("Starting OAuth authentication flow")
 188 |             flow = InstalledAppFlow.from_client_config(client_config, SCOPES)
 189 |             creds = flow.run_local_server(port=0)
 190 |             logger.info("OAuth flow completed successfully")
 191 |         
 192 |         # Save the refreshed/new credentials
 193 |         try:
 194 |             logger.info(f"Saving credentials to {token_path}")
 195 |             # Ensure directory exists
 196 |             os.makedirs(os.path.dirname(token_path), exist_ok=True)
 197 |             with open(token_path, 'w') as f:
 198 |                 f.write(creds.to_json())
 199 |         except Exception as e:
 200 |             logger.warning(f"Could not save credentials: {str(e)}")
 201 |     
 202 |     return creds
 203 | 
 204 | def get_headers(creds):
 205 |     """Get headers for Google Ads API requests."""
 206 |     if not GOOGLE_ADS_DEVELOPER_TOKEN:
 207 |         raise ValueError("GOOGLE_ADS_DEVELOPER_TOKEN environment variable not set")
 208 |     
 209 |     # Handle different credential types
 210 |     if isinstance(creds, service_account.Credentials):
 211 |         # For service account, we need to get a new bearer token
 212 |         auth_req = Request()
 213 |         creds.refresh(auth_req)
 214 |         token = creds.token
 215 |     else:
 216 |         # For OAuth credentials, check if token needs refresh
 217 |         if not creds.valid:
 218 |             if creds.expired and creds.refresh_token:
 219 |                 try:
 220 |                     logger.info("Refreshing expired OAuth token in get_headers")
 221 |                     creds.refresh(Request())
 222 |                     logger.info("Token successfully refreshed in get_headers")
 223 |                 except RefreshError as e:
 224 |                     logger.error(f"Error refreshing token in get_headers: {str(e)}")
 225 |                     raise ValueError(f"Failed to refresh OAuth token: {str(e)}")
 226 |                 except Exception as e:
 227 |                     logger.error(f"Unexpected error refreshing token in get_headers: {str(e)}")
 228 |                     raise
 229 |             else:
 230 |                 raise ValueError("OAuth credentials are invalid and cannot be refreshed")
 231 |         
 232 |         token = creds.token
 233 |         
 234 |     headers = {
 235 |         'Authorization': f'Bearer {token}',
 236 |         'developer-token': GOOGLE_ADS_DEVELOPER_TOKEN,
 237 |         'content-type': 'application/json'
 238 |     }
 239 |     
 240 |     if GOOGLE_ADS_LOGIN_CUSTOMER_ID:
 241 |         headers['login-customer-id'] = format_customer_id(GOOGLE_ADS_LOGIN_CUSTOMER_ID)
 242 |     
 243 |     return headers
 244 | 
 245 | @mcp.tool()
 246 | async def list_accounts() -> str:
 247 |     """
 248 |     Lists all accessible Google Ads accounts.
 249 |     
 250 |     This is typically the first command you should run to identify which accounts 
 251 |     you have access to. The returned account IDs can be used in subsequent commands.
 252 |     
 253 |     Returns:
 254 |         A formatted list of all Google Ads accounts accessible with your credentials
 255 |     """
 256 |     try:
 257 |         creds = get_credentials()
 258 |         headers = get_headers(creds)
 259 |         
 260 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers:listAccessibleCustomers"
 261 |         response = requests.get(url, headers=headers)
 262 |         
 263 |         if response.status_code != 200:
 264 |             return f"Error accessing accounts: {response.text}"
 265 |         
 266 |         customers = response.json()
 267 |         if not customers.get('resourceNames'):
 268 |             return "No accessible accounts found."
 269 |         
 270 |         # Format the results
 271 |         result_lines = ["Accessible Google Ads Accounts:"]
 272 |         result_lines.append("-" * 50)
 273 |         
 274 |         for resource_name in customers['resourceNames']:
 275 |             customer_id = resource_name.split('/')[-1]
 276 |             formatted_id = format_customer_id(customer_id)
 277 |             result_lines.append(f"Account ID: {formatted_id}")
 278 |         
 279 |         return "\n".join(result_lines)
 280 |     
 281 |     except Exception as e:
 282 |         return f"Error listing accounts: {str(e)}"
 283 | 
 284 | @mcp.tool()
 285 | async def execute_gaql_query(
 286 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
 287 |     query: str = Field(description="Valid GAQL query string following Google Ads Query Language syntax")
 288 | ) -> str:
 289 |     """
 290 |     Execute a custom GAQL (Google Ads Query Language) query.
 291 |     
 292 |     This tool allows you to run any valid GAQL query against the Google Ads API.
 293 |     
 294 |     Args:
 295 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 296 |         query: The GAQL query to execute (must follow GAQL syntax)
 297 |         
 298 |     Returns:
 299 |         Formatted query results or error message
 300 |         
 301 |     Example:
 302 |         customer_id: "1234567890"
 303 |         query: "SELECT campaign.id, campaign.name FROM campaign LIMIT 10"
 304 |     """
 305 |     try:
 306 |         creds = get_credentials()
 307 |         headers = get_headers(creds)
 308 |         
 309 |         formatted_customer_id = format_customer_id(customer_id)
 310 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
 311 |         
 312 |         payload = {"query": query}
 313 |         response = requests.post(url, headers=headers, json=payload)
 314 |         
 315 |         if response.status_code != 200:
 316 |             return f"Error executing query: {response.text}"
 317 |         
 318 |         results = response.json()
 319 |         if not results.get('results'):
 320 |             return "No results found for the query."
 321 |         
 322 |         # Format the results as a table
 323 |         result_lines = [f"Query Results for Account {formatted_customer_id}:"]
 324 |         result_lines.append("-" * 80)
 325 |         
 326 |         # Get field names from the first result
 327 |         fields = []
 328 |         first_result = results['results'][0]
 329 |         for key in first_result:
 330 |             if isinstance(first_result[key], dict):
 331 |                 for subkey in first_result[key]:
 332 |                     fields.append(f"{key}.{subkey}")
 333 |             else:
 334 |                 fields.append(key)
 335 |         
 336 |         # Add header
 337 |         result_lines.append(" | ".join(fields))
 338 |         result_lines.append("-" * 80)
 339 |         
 340 |         # Add data rows
 341 |         for result in results['results']:
 342 |             row_data = []
 343 |             for field in fields:
 344 |                 if "." in field:
 345 |                     parent, child = field.split(".")
 346 |                     value = str(result.get(parent, {}).get(child, ""))
 347 |                 else:
 348 |                     value = str(result.get(field, ""))
 349 |                 row_data.append(value)
 350 |             result_lines.append(" | ".join(row_data))
 351 |         
 352 |         return "\n".join(result_lines)
 353 |     
 354 |     except Exception as e:
 355 |         return f"Error executing GAQL query: {str(e)}"
 356 | 
 357 | @mcp.tool()
 358 | async def get_campaign_performance(
 359 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
 360 |     days: int = Field(default=30, description="Number of days to look back (7, 30, 90, etc.)")
 361 | ) -> str:
 362 |     """
 363 |     Get campaign performance metrics for the specified time period.
 364 |     
 365 |     RECOMMENDED WORKFLOW:
 366 |     1. First run list_accounts() to get available account IDs
 367 |     2. Then run get_account_currency() to see what currency the account uses
 368 |     3. Finally run this command to get campaign performance
 369 |     
 370 |     Args:
 371 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 372 |         days: Number of days to look back (default: 30)
 373 |         
 374 |     Returns:
 375 |         Formatted table of campaign performance data
 376 |         
 377 |     Note:
 378 |         Cost values are in micros (millionths) of the account currency
 379 |         (e.g., 1000000 = 1 USD in a USD account)
 380 |         
 381 |     Example:
 382 |         customer_id: "1234567890"
 383 |         days: 14
 384 |     """
 385 |     query = f"""
 386 |         SELECT
 387 |             campaign.id,
 388 |             campaign.name,
 389 |             campaign.status,
 390 |             metrics.impressions,
 391 |             metrics.clicks,
 392 |             metrics.cost_micros,
 393 |             metrics.conversions,
 394 |             metrics.average_cpc
 395 |         FROM campaign
 396 |         WHERE segments.date DURING LAST_{days}_DAYS
 397 |         ORDER BY metrics.cost_micros DESC
 398 |         LIMIT 50
 399 |     """
 400 |     
 401 |     return await execute_gaql_query(customer_id, query)
 402 | 
 403 | @mcp.tool()
 404 | async def get_ad_performance(
 405 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
 406 |     days: int = Field(default=30, description="Number of days to look back (7, 30, 90, etc.)")
 407 | ) -> str:
 408 |     """
 409 |     Get ad performance metrics for the specified time period.
 410 |     
 411 |     RECOMMENDED WORKFLOW:
 412 |     1. First run list_accounts() to get available account IDs
 413 |     2. Then run get_account_currency() to see what currency the account uses
 414 |     3. Finally run this command to get ad performance
 415 |     
 416 |     Args:
 417 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 418 |         days: Number of days to look back (default: 30)
 419 |         
 420 |     Returns:
 421 |         Formatted table of ad performance data
 422 |         
 423 |     Note:
 424 |         Cost values are in micros (millionths) of the account currency
 425 |         (e.g., 1000000 = 1 USD in a USD account)
 426 |         
 427 |     Example:
 428 |         customer_id: "1234567890"
 429 |         days: 14
 430 |     """
 431 |     query = f"""
 432 |         SELECT
 433 |             ad_group_ad.ad.id,
 434 |             ad_group_ad.ad.name,
 435 |             ad_group_ad.status,
 436 |             campaign.name,
 437 |             ad_group.name,
 438 |             metrics.impressions,
 439 |             metrics.clicks,
 440 |             metrics.cost_micros,
 441 |             metrics.conversions
 442 |         FROM ad_group_ad
 443 |         WHERE segments.date DURING LAST_{days}_DAYS
 444 |         ORDER BY metrics.impressions DESC
 445 |         LIMIT 50
 446 |     """
 447 |     
 448 |     return await execute_gaql_query(customer_id, query)
 449 | 
 450 | @mcp.tool()
 451 | async def run_gaql(
 452 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
 453 |     query: str = Field(description="Valid GAQL query string following Google Ads Query Language syntax"),
 454 |     format: str = Field(default="table", description="Output format: 'table', 'json', or 'csv'")
 455 | ) -> str:
 456 |     """
 457 |     Execute any arbitrary GAQL (Google Ads Query Language) query with custom formatting options.
 458 |     
 459 |     This is the most powerful tool for custom Google Ads data queries.
 460 |     
 461 |     Args:
 462 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 463 |         query: The GAQL query to execute (any valid GAQL query)
 464 |         format: Output format ("table", "json", or "csv")
 465 |     
 466 |     Returns:
 467 |         Query results in the requested format
 468 |     
 469 |     EXAMPLE QUERIES:
 470 |     
 471 |     1. Basic campaign metrics:
 472 |         SELECT 
 473 |           campaign.name, 
 474 |           metrics.clicks, 
 475 |           metrics.impressions,
 476 |           metrics.cost_micros
 477 |         FROM campaign 
 478 |         WHERE segments.date DURING LAST_7_DAYS
 479 |     
 480 |     2. Ad group performance:
 481 |         SELECT 
 482 |           ad_group.name, 
 483 |           metrics.conversions, 
 484 |           metrics.cost_micros,
 485 |           campaign.name
 486 |         FROM ad_group 
 487 |         WHERE metrics.clicks > 100
 488 |     
 489 |     3. Keyword analysis:
 490 |         SELECT 
 491 |           keyword.text, 
 492 |           metrics.average_position, 
 493 |           metrics.ctr
 494 |         FROM keyword_view 
 495 |         ORDER BY metrics.impressions DESC
 496 |         
 497 |     4. Get conversion data:
 498 |         SELECT
 499 |           campaign.name,
 500 |           metrics.conversions,
 501 |           metrics.conversions_value,
 502 |           metrics.cost_micros
 503 |         FROM campaign
 504 |         WHERE segments.date DURING LAST_30_DAYS
 505 |         
 506 |             Note:
 507 |         Cost values are in micros (millionths) of the account currency
 508 |         (e.g., 1000000 = 1 USD in a USD account)
 509 |     """
 510 |     try:
 511 |         creds = get_credentials()
 512 |         headers = get_headers(creds)
 513 |         
 514 |         formatted_customer_id = format_customer_id(customer_id)
 515 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
 516 |         
 517 |         payload = {"query": query}
 518 |         response = requests.post(url, headers=headers, json=payload)
 519 |         
 520 |         if response.status_code != 200:
 521 |             return f"Error executing query: {response.text}"
 522 |         
 523 |         results = response.json()
 524 |         if not results.get('results'):
 525 |             return "No results found for the query."
 526 |         
 527 |         if format.lower() == "json":
 528 |             return json.dumps(results, indent=2)
 529 |         
 530 |         elif format.lower() == "csv":
 531 |             # Get field names from the first result
 532 |             fields = []
 533 |             first_result = results['results'][0]
 534 |             for key, value in first_result.items():
 535 |                 if isinstance(value, dict):
 536 |                     for subkey in value:
 537 |                         fields.append(f"{key}.{subkey}")
 538 |                 else:
 539 |                     fields.append(key)
 540 |             
 541 |             # Create CSV string
 542 |             csv_lines = [",".join(fields)]
 543 |             for result in results['results']:
 544 |                 row_data = []
 545 |                 for field in fields:
 546 |                     if "." in field:
 547 |                         parent, child = field.split(".")
 548 |                         value = str(result.get(parent, {}).get(child, "")).replace(",", ";")
 549 |                     else:
 550 |                         value = str(result.get(field, "")).replace(",", ";")
 551 |                     row_data.append(value)
 552 |                 csv_lines.append(",".join(row_data))
 553 |             
 554 |             return "\n".join(csv_lines)
 555 |         
 556 |         else:  # default table format
 557 |             result_lines = [f"Query Results for Account {formatted_customer_id}:"]
 558 |             result_lines.append("-" * 100)
 559 |             
 560 |             # Get field names and maximum widths
 561 |             fields = []
 562 |             field_widths = {}
 563 |             first_result = results['results'][0]
 564 |             
 565 |             for key, value in first_result.items():
 566 |                 if isinstance(value, dict):
 567 |                     for subkey in value:
 568 |                         field = f"{key}.{subkey}"
 569 |                         fields.append(field)
 570 |                         field_widths[field] = len(field)
 571 |                 else:
 572 |                     fields.append(key)
 573 |                     field_widths[key] = len(key)
 574 |             
 575 |             # Calculate maximum field widths
 576 |             for result in results['results']:
 577 |                 for field in fields:
 578 |                     if "." in field:
 579 |                         parent, child = field.split(".")
 580 |                         value = str(result.get(parent, {}).get(child, ""))
 581 |                     else:
 582 |                         value = str(result.get(field, ""))
 583 |                     field_widths[field] = max(field_widths[field], len(value))
 584 |             
 585 |             # Create formatted header
 586 |             header = " | ".join(f"{field:{field_widths[field]}}" for field in fields)
 587 |             result_lines.append(header)
 588 |             result_lines.append("-" * len(header))
 589 |             
 590 |             # Add data rows
 591 |             for result in results['results']:
 592 |                 row_data = []
 593 |                 for field in fields:
 594 |                     if "." in field:
 595 |                         parent, child = field.split(".")
 596 |                         value = str(result.get(parent, {}).get(child, ""))
 597 |                     else:
 598 |                         value = str(result.get(field, ""))
 599 |                     row_data.append(f"{value:{field_widths[field]}}")
 600 |                 result_lines.append(" | ".join(row_data))
 601 |             
 602 |             return "\n".join(result_lines)
 603 |     
 604 |     except Exception as e:
 605 |         return f"Error executing GAQL query: {str(e)}"
 606 | 
 607 | @mcp.tool()
 608 | async def get_ad_creatives(
 609 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'")
 610 | ) -> str:
 611 |     """
 612 |     Get ad creative details including headlines, descriptions, and URLs.
 613 |     
 614 |     This tool retrieves the actual ad content (headlines, descriptions) 
 615 |     for review and analysis. Great for creative audits.
 616 |     
 617 |     RECOMMENDED WORKFLOW:
 618 |     1. First run list_accounts() to get available account IDs
 619 |     2. Then run this command with the desired account ID
 620 |     
 621 |     Args:
 622 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 623 |         
 624 |     Returns:
 625 |         Formatted list of ad creative details
 626 |         
 627 |     Example:
 628 |         customer_id: "1234567890"
 629 |     """
 630 |     query = """
 631 |         SELECT
 632 |             ad_group_ad.ad.id,
 633 |             ad_group_ad.ad.name,
 634 |             ad_group_ad.ad.type,
 635 |             ad_group_ad.ad.final_urls,
 636 |             ad_group_ad.status,
 637 |             ad_group_ad.ad.responsive_search_ad.headlines,
 638 |             ad_group_ad.ad.responsive_search_ad.descriptions,
 639 |             ad_group.name,
 640 |             campaign.name
 641 |         FROM ad_group_ad
 642 |         WHERE ad_group_ad.status != 'REMOVED'
 643 |         ORDER BY campaign.name, ad_group.name
 644 |         LIMIT 50
 645 |     """
 646 |     
 647 |     try:
 648 |         creds = get_credentials()
 649 |         headers = get_headers(creds)
 650 |         
 651 |         formatted_customer_id = format_customer_id(customer_id)
 652 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
 653 |         
 654 |         payload = {"query": query}
 655 |         response = requests.post(url, headers=headers, json=payload)
 656 |         
 657 |         if response.status_code != 200:
 658 |             return f"Error retrieving ad creatives: {response.text}"
 659 |         
 660 |         results = response.json()
 661 |         if not results.get('results'):
 662 |             return "No ad creatives found for this customer ID."
 663 |         
 664 |         # Format the results in a readable way
 665 |         output_lines = [f"Ad Creatives for Customer ID {formatted_customer_id}:"]
 666 |         output_lines.append("=" * 80)
 667 |         
 668 |         for i, result in enumerate(results['results'], 1):
 669 |             ad = result.get('adGroupAd', {}).get('ad', {})
 670 |             ad_group = result.get('adGroup', {})
 671 |             campaign = result.get('campaign', {})
 672 |             
 673 |             output_lines.append(f"\n{i}. Campaign: {campaign.get('name', 'N/A')}")
 674 |             output_lines.append(f"   Ad Group: {ad_group.get('name', 'N/A')}")
 675 |             output_lines.append(f"   Ad ID: {ad.get('id', 'N/A')}")
 676 |             output_lines.append(f"   Ad Name: {ad.get('name', 'N/A')}")
 677 |             output_lines.append(f"   Status: {result.get('adGroupAd', {}).get('status', 'N/A')}")
 678 |             output_lines.append(f"   Type: {ad.get('type', 'N/A')}")
 679 |             
 680 |             # Handle Responsive Search Ads
 681 |             rsa = ad.get('responsiveSearchAd', {})
 682 |             if rsa:
 683 |                 if 'headlines' in rsa:
 684 |                     output_lines.append("   Headlines:")
 685 |                     for headline in rsa['headlines']:
 686 |                         output_lines.append(f"     - {headline.get('text', 'N/A')}")
 687 |                 
 688 |                 if 'descriptions' in rsa:
 689 |                     output_lines.append("   Descriptions:")
 690 |                     for desc in rsa['descriptions']:
 691 |                         output_lines.append(f"     - {desc.get('text', 'N/A')}")
 692 |             
 693 |             # Handle Final URLs
 694 |             final_urls = ad.get('finalUrls', [])
 695 |             if final_urls:
 696 |                 output_lines.append(f"   Final URLs: {', '.join(final_urls)}")
 697 |             
 698 |             output_lines.append("-" * 80)
 699 |         
 700 |         return "\n".join(output_lines)
 701 |     
 702 |     except Exception as e:
 703 |         return f"Error retrieving ad creatives: {str(e)}"
 704 | 
 705 | @mcp.tool()
 706 | async def get_account_currency(
 707 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'")
 708 | ) -> str:
 709 |     """
 710 |     Retrieve the default currency code used by the Google Ads account.
 711 |     
 712 |     IMPORTANT: Run this first before analyzing cost data to understand which currency
 713 |     the account uses. Cost values are always displayed in the account's currency.
 714 |     
 715 |     Args:
 716 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 717 |     
 718 |     Returns:
 719 |         The account's default currency code (e.g., 'USD', 'EUR', 'GBP')
 720 |         
 721 |     Example:
 722 |         customer_id: "1234567890"
 723 |     """
 724 |     query = """
 725 |         SELECT
 726 |             customer.id,
 727 |             customer.currency_code
 728 |         FROM customer
 729 |         LIMIT 1
 730 |     """
 731 |     
 732 |     try:
 733 |         creds = get_credentials()
 734 |         
 735 |         # Force refresh if needed
 736 |         if not creds.valid:
 737 |             logger.info("Credentials not valid, attempting refresh...")
 738 |             if hasattr(creds, 'refresh_token') and creds.refresh_token:
 739 |                 creds.refresh(Request())
 740 |                 logger.info("Credentials refreshed successfully")
 741 |             else:
 742 |                 raise ValueError("Invalid credentials and no refresh token available")
 743 |         
 744 |         headers = get_headers(creds)
 745 |         
 746 |         formatted_customer_id = format_customer_id(customer_id)
 747 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
 748 |         
 749 |         payload = {"query": query}
 750 |         response = requests.post(url, headers=headers, json=payload)
 751 |         
 752 |         if response.status_code != 200:
 753 |             return f"Error retrieving account currency: {response.text}"
 754 |         
 755 |         results = response.json()
 756 |         if not results.get('results'):
 757 |             return "No account information found for this customer ID."
 758 |         
 759 |         # Extract the currency code from the results
 760 |         customer = results['results'][0].get('customer', {})
 761 |         currency_code = customer.get('currencyCode', 'Not specified')
 762 |         
 763 |         return f"Account {formatted_customer_id} uses currency: {currency_code}"
 764 |     
 765 |     except Exception as e:
 766 |         logger.error(f"Error retrieving account currency: {str(e)}")
 767 |         return f"Error retrieving account currency: {str(e)}"
 768 | 
 769 | @mcp.resource("gaql://reference")
 770 | def gaql_reference() -> str:
 771 |     """Google Ads Query Language (GAQL) reference documentation."""
 772 |     return """
 773 |     # Google Ads Query Language (GAQL) Reference
 774 |     
 775 |     GAQL is similar to SQL but with specific syntax for Google Ads. Here's a quick reference:
 776 |     
 777 |     ## Basic Query Structure
 778 |     ```
 779 |     SELECT field1, field2, ... 
 780 |     FROM resource_type
 781 |     WHERE condition
 782 |     ORDER BY field [ASC|DESC]
 783 |     LIMIT n
 784 |     ```
 785 |     
 786 |     ## Common Field Types
 787 |     
 788 |     ### Resource Fields
 789 |     - campaign.id, campaign.name, campaign.status
 790 |     - ad_group.id, ad_group.name, ad_group.status
 791 |     - ad_group_ad.ad.id, ad_group_ad.ad.final_urls
 792 |     - keyword.text, keyword.match_type
 793 |     
 794 |     ### Metric Fields
 795 |     - metrics.impressions
 796 |     - metrics.clicks
 797 |     - metrics.cost_micros
 798 |     - metrics.conversions
 799 |     - metrics.ctr
 800 |     - metrics.average_cpc
 801 |     
 802 |     ### Segment Fields
 803 |     - segments.date
 804 |     - segments.device
 805 |     - segments.day_of_week
 806 |     
 807 |     ## Common WHERE Clauses
 808 |     
 809 |     ### Date Ranges
 810 |     - WHERE segments.date DURING LAST_7_DAYS
 811 |     - WHERE segments.date DURING LAST_30_DAYS
 812 |     - WHERE segments.date BETWEEN '2023-01-01' AND '2023-01-31'
 813 |     
 814 |     ### Filtering
 815 |     - WHERE campaign.status = 'ENABLED'
 816 |     - WHERE metrics.clicks > 100
 817 |     - WHERE campaign.name LIKE '%Brand%'
 818 |     
 819 |     ## Tips
 820 |     - Always check account currency before analyzing cost data
 821 |     - Cost values are in micros (millionths): 1000000 = 1 unit of currency
 822 |     - Use LIMIT to avoid large result sets
 823 |     """
 824 | 
 825 | @mcp.prompt("google_ads_workflow")
 826 | def google_ads_workflow() -> str:
 827 |     """Provides guidance on the recommended workflow for using Google Ads tools."""
 828 |     return """
 829 |     I'll help you analyze your Google Ads account data. Here's the recommended workflow:
 830 |     
 831 |     1. First, let's list all the accounts you have access to:
 832 |        - Run the `list_accounts()` tool to get available account IDs
 833 |     
 834 |     2. Before analyzing cost data, let's check which currency the account uses:
 835 |        - Run `get_account_currency(customer_id="ACCOUNT_ID")` with your selected account
 836 |     
 837 |     3. Now we can explore the account data:
 838 |        - For campaign performance: `get_campaign_performance(customer_id="ACCOUNT_ID", days=30)`
 839 |        - For ad performance: `get_ad_performance(customer_id="ACCOUNT_ID", days=30)`
 840 |        - For ad creative review: `get_ad_creatives(customer_id="ACCOUNT_ID")`
 841 |     
 842 |     4. For custom queries, use the GAQL query tool:
 843 |        - `run_gaql(customer_id="ACCOUNT_ID", query="YOUR_QUERY", format="table")`
 844 |     
 845 |     5. Let me know if you have specific questions about:
 846 |        - Campaign performance
 847 |        - Ad performance
 848 |        - Keywords
 849 |        - Budgets
 850 |        - Conversions
 851 |     
 852 |     Important: Always provide the customer_id as a string.
 853 |     For example: customer_id="1234567890"
 854 |     """
 855 | 
 856 | @mcp.prompt("gaql_help")
 857 | def gaql_help() -> str:
 858 |     """Provides assistance for writing GAQL queries."""
 859 |     return """
 860 |     I'll help you write a Google Ads Query Language (GAQL) query. Here are some examples to get you started:
 861 |     
 862 |     ## Get campaign performance last 30 days
 863 |     ```
 864 |     SELECT
 865 |       campaign.id,
 866 |       campaign.name,
 867 |       campaign.status,
 868 |       metrics.impressions,
 869 |       metrics.clicks,
 870 |       metrics.cost_micros,
 871 |       metrics.conversions
 872 |     FROM campaign
 873 |     WHERE segments.date DURING LAST_30_DAYS
 874 |     ORDER BY metrics.cost_micros DESC
 875 |     ```
 876 |     
 877 |     ## Get keyword performance
 878 |     ```
 879 |     SELECT
 880 |       keyword.text,
 881 |       keyword.match_type,
 882 |       metrics.impressions,
 883 |       metrics.clicks,
 884 |       metrics.cost_micros,
 885 |       metrics.conversions
 886 |     FROM keyword_view
 887 |     WHERE segments.date DURING LAST_30_DAYS
 888 |     ORDER BY metrics.clicks DESC
 889 |     ```
 890 |     
 891 |     ## Get ads with poor performance
 892 |     ```
 893 |     SELECT
 894 |       ad_group_ad.ad.id,
 895 |       ad_group_ad.ad.name,
 896 |       campaign.name,
 897 |       ad_group.name,
 898 |       metrics.impressions,
 899 |       metrics.clicks,
 900 |       metrics.conversions
 901 |     FROM ad_group_ad
 902 |     WHERE 
 903 |       segments.date DURING LAST_30_DAYS
 904 |       AND metrics.impressions > 1000
 905 |       AND metrics.ctr < 0.01
 906 |     ORDER BY metrics.impressions DESC
 907 |     ```
 908 |     
 909 |     Once you've chosen a query, use it with:
 910 |     ```
 911 |     run_gaql(customer_id="YOUR_ACCOUNT_ID", query="YOUR_QUERY_HERE")
 912 |     ```
 913 |     
 914 |     Remember:
 915 |     - Always provide the customer_id as a string
 916 |     - Cost values are in micros (1,000,000 = 1 unit of currency)
 917 |     - Use LIMIT to avoid large result sets
 918 |     - Check the account currency before analyzing cost data
 919 |     """
 920 | 
 921 | @mcp.tool()
 922 | async def get_image_assets(
 923 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
 924 |     limit: int = Field(default=50, description="Maximum number of image assets to return")
 925 | ) -> str:
 926 |     """
 927 |     Retrieve all image assets in the account including their full-size URLs.
 928 |     
 929 |     This tool allows you to get details about image assets used in your Google Ads account,
 930 |     including the URLs to download the full-size images for further processing or analysis.
 931 |     
 932 |     RECOMMENDED WORKFLOW:
 933 |     1. First run list_accounts() to get available account IDs
 934 |     2. Then run this command with the desired account ID
 935 |     
 936 |     Args:
 937 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
 938 |         limit: Maximum number of image assets to return (default: 50)
 939 |         
 940 |     Returns:
 941 |         Formatted list of image assets with their download URLs
 942 |         
 943 |     Example:
 944 |         customer_id: "1234567890"
 945 |         limit: 100
 946 |     """
 947 |     query = f"""
 948 |         SELECT
 949 |             asset.id,
 950 |             asset.name,
 951 |             asset.type,
 952 |             asset.image_asset.full_size.url,
 953 |             asset.image_asset.full_size.height_pixels,
 954 |             asset.image_asset.full_size.width_pixels,
 955 |             asset.image_asset.file_size
 956 |         FROM
 957 |             asset
 958 |         WHERE
 959 |             asset.type = 'IMAGE'
 960 |         LIMIT {limit}
 961 |     """
 962 |     
 963 |     try:
 964 |         creds = get_credentials()
 965 |         headers = get_headers(creds)
 966 |         
 967 |         formatted_customer_id = format_customer_id(customer_id)
 968 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
 969 |         
 970 |         payload = {"query": query}
 971 |         response = requests.post(url, headers=headers, json=payload)
 972 |         
 973 |         if response.status_code != 200:
 974 |             return f"Error retrieving image assets: {response.text}"
 975 |         
 976 |         results = response.json()
 977 |         if not results.get('results'):
 978 |             return "No image assets found for this customer ID."
 979 |         
 980 |         # Format the results in a readable way
 981 |         output_lines = [f"Image Assets for Customer ID {formatted_customer_id}:"]
 982 |         output_lines.append("=" * 80)
 983 |         
 984 |         for i, result in enumerate(results['results'], 1):
 985 |             asset = result.get('asset', {})
 986 |             image_asset = asset.get('imageAsset', {})
 987 |             full_size = image_asset.get('fullSize', {})
 988 |             
 989 |             output_lines.append(f"\n{i}. Asset ID: {asset.get('id', 'N/A')}")
 990 |             output_lines.append(f"   Name: {asset.get('name', 'N/A')}")
 991 |             
 992 |             if full_size:
 993 |                 output_lines.append(f"   Image URL: {full_size.get('url', 'N/A')}")
 994 |                 output_lines.append(f"   Dimensions: {full_size.get('widthPixels', 'N/A')} x {full_size.get('heightPixels', 'N/A')} px")
 995 |             
 996 |             file_size = image_asset.get('fileSize', 'N/A')
 997 |             if file_size != 'N/A':
 998 |                 # Convert to KB for readability
 999 |                 file_size_kb = int(file_size) / 1024
1000 |                 output_lines.append(f"   File Size: {file_size_kb:.2f} KB")
1001 |             
1002 |             output_lines.append("-" * 80)
1003 |         
1004 |         return "\n".join(output_lines)
1005 |     
1006 |     except Exception as e:
1007 |         return f"Error retrieving image assets: {str(e)}"
1008 | 
1009 | @mcp.tool()
1010 | async def download_image_asset(
1011 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
1012 |     asset_id: str = Field(description="The ID of the image asset to download"),
1013 |     output_dir: str = Field(default="./ad_images", description="Directory to save the downloaded image")
1014 | ) -> str:
1015 |     """
1016 |     Download a specific image asset from a Google Ads account.
1017 |     
1018 |     This tool allows you to download the full-size version of an image asset
1019 |     for further processing, analysis, or backup.
1020 |     
1021 |     RECOMMENDED WORKFLOW:
1022 |     1. First run list_accounts() to get available account IDs
1023 |     2. Then run get_image_assets() to get available image asset IDs
1024 |     3. Finally use this command to download specific images
1025 |     
1026 |     Args:
1027 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
1028 |         asset_id: The ID of the image asset to download
1029 |         output_dir: Directory where the image should be saved (default: ./ad_images)
1030 |         
1031 |     Returns:
1032 |         Status message indicating success or failure of the download
1033 |         
1034 |     Example:
1035 |         customer_id: "1234567890"
1036 |         asset_id: "12345"
1037 |         output_dir: "./my_ad_images"
1038 |     """
1039 |     query = f"""
1040 |         SELECT
1041 |             asset.id,
1042 |             asset.name,
1043 |             asset.image_asset.full_size.url
1044 |         FROM
1045 |             asset
1046 |         WHERE
1047 |             asset.type = 'IMAGE'
1048 |             AND asset.id = {asset_id}
1049 |         LIMIT 1
1050 |     """
1051 |     
1052 |     try:
1053 |         creds = get_credentials()
1054 |         headers = get_headers(creds)
1055 |         
1056 |         formatted_customer_id = format_customer_id(customer_id)
1057 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
1058 |         
1059 |         payload = {"query": query}
1060 |         response = requests.post(url, headers=headers, json=payload)
1061 |         
1062 |         if response.status_code != 200:
1063 |             return f"Error retrieving image asset: {response.text}"
1064 |         
1065 |         results = response.json()
1066 |         if not results.get('results'):
1067 |             return f"No image asset found with ID {asset_id}"
1068 |         
1069 |         # Extract the image URL
1070 |         asset = results['results'][0].get('asset', {})
1071 |         image_url = asset.get('imageAsset', {}).get('fullSize', {}).get('url')
1072 |         asset_name = asset.get('name', f"image_{asset_id}")
1073 |         
1074 |         if not image_url:
1075 |             return f"No download URL found for image asset ID {asset_id}"
1076 |         
1077 |         # Validate and sanitize the output directory to prevent path traversal
1078 |         try:
1079 |             # Get the base directory (current working directory)
1080 |             base_dir = Path.cwd()
1081 |             # Resolve the output directory to an absolute path
1082 |             resolved_output_dir = Path(output_dir).resolve()
1083 |             
1084 |             # Ensure the resolved path is within or under the current working directory
1085 |             # This prevents path traversal attacks like "../../../etc"
1086 |             try:
1087 |                 resolved_output_dir.relative_to(base_dir)
1088 |             except ValueError:
1089 |                 # If the path is not relative to base_dir, use the default safe directory
1090 |                 resolved_output_dir = base_dir / "ad_images"
1091 |                 logger.warning(f"Invalid output directory '{output_dir}' - using default './ad_images'")
1092 |             
1093 |             # Create output directory if it doesn't exist
1094 |             resolved_output_dir.mkdir(parents=True, exist_ok=True)
1095 |             
1096 |         except Exception as e:
1097 |             return f"Error creating output directory: {str(e)}"
1098 |         
1099 |         # Download the image
1100 |         image_response = requests.get(image_url)
1101 |         if image_response.status_code != 200:
1102 |             return f"Failed to download image: HTTP {image_response.status_code}"
1103 |         
1104 |         # Clean the filename to be safe for filesystem
1105 |         safe_name = ''.join(c for c in asset_name if c.isalnum() or c in ' ._-')
1106 |         filename = f"{asset_id}_{safe_name}.jpg"
1107 |         file_path = resolved_output_dir / filename
1108 |         
1109 |         # Save the image
1110 |         with open(file_path, 'wb') as f:
1111 |             f.write(image_response.content)
1112 |         
1113 |         return f"Successfully downloaded image asset {asset_id} to {file_path}"
1114 |     
1115 |     except Exception as e:
1116 |         return f"Error downloading image asset: {str(e)}"
1117 | 
1118 | @mcp.tool()
1119 | async def get_asset_usage(
1120 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
1121 |     asset_id: str = Field(default=None, description="Optional: specific asset ID to look up (leave empty to get all image assets)"),
1122 |     asset_type: str = Field(default="IMAGE", description="Asset type to search for ('IMAGE', 'TEXT', 'VIDEO', etc.)")
1123 | ) -> str:
1124 |     """
1125 |     Find where specific assets are being used in campaigns, ad groups, and ads.
1126 |     
1127 |     This tool helps you analyze how assets are linked to campaigns and ads across your account,
1128 |     which is useful for creative analysis and optimization.
1129 |     
1130 |     RECOMMENDED WORKFLOW:
1131 |     1. First run list_accounts() to get available account IDs
1132 |     2. Run get_image_assets() to see available assets
1133 |     3. Use this command to see where specific assets are used
1134 |     
1135 |     Args:
1136 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
1137 |         asset_id: Optional specific asset ID to look up (leave empty to get all assets of the specified type)
1138 |         asset_type: Type of asset to search for (default: 'IMAGE')
1139 |         
1140 |     Returns:
1141 |         Formatted report showing where assets are used in the account
1142 |         
1143 |     Example:
1144 |         customer_id: "1234567890"
1145 |         asset_id: "12345"
1146 |         asset_type: "IMAGE"
1147 |     """
1148 |     # Build the query based on whether a specific asset ID was provided
1149 |     where_clause = f"asset.type = '{asset_type}'"
1150 |     if asset_id:
1151 |         where_clause += f" AND asset.id = {asset_id}"
1152 |     
1153 |     # First get the assets themselves
1154 |     assets_query = f"""
1155 |         SELECT
1156 |             asset.id,
1157 |             asset.name,
1158 |             asset.type
1159 |         FROM
1160 |             asset
1161 |         WHERE
1162 |             {where_clause}
1163 |         LIMIT 100
1164 |     """
1165 |     
1166 |     # Then get the associations between assets and campaigns/ad groups
1167 |     # Try using campaign_asset instead of asset_link
1168 |     associations_query = f"""
1169 |         SELECT
1170 |             campaign.id,
1171 |             campaign.name,
1172 |             asset.id,
1173 |             asset.name,
1174 |             asset.type
1175 |         FROM
1176 |             campaign_asset
1177 |         WHERE
1178 |             {where_clause}
1179 |         LIMIT 500
1180 |     """
1181 | 
1182 |     # Also try ad_group_asset for ad group level information
1183 |     ad_group_query = f"""
1184 |         SELECT
1185 |             ad_group.id,
1186 |             ad_group.name,
1187 |             asset.id,
1188 |             asset.name,
1189 |             asset.type
1190 |         FROM
1191 |             ad_group_asset
1192 |         WHERE
1193 |             {where_clause}
1194 |         LIMIT 500
1195 |     """
1196 |     
1197 |     try:
1198 |         creds = get_credentials()
1199 |         headers = get_headers(creds)
1200 |         
1201 |         formatted_customer_id = format_customer_id(customer_id)
1202 |         
1203 |         # First get the assets
1204 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
1205 |         payload = {"query": assets_query}
1206 |         assets_response = requests.post(url, headers=headers, json=payload)
1207 |         
1208 |         if assets_response.status_code != 200:
1209 |             return f"Error retrieving assets: {assets_response.text}"
1210 |         
1211 |         assets_results = assets_response.json()
1212 |         if not assets_results.get('results'):
1213 |             return f"No {asset_type} assets found for this customer ID."
1214 |         
1215 |         # Now get the associations
1216 |         payload = {"query": associations_query}
1217 |         assoc_response = requests.post(url, headers=headers, json=payload)
1218 |         
1219 |         if assoc_response.status_code != 200:
1220 |             return f"Error retrieving asset associations: {assoc_response.text}"
1221 |         
1222 |         assoc_results = assoc_response.json()
1223 |         
1224 |         # Format the results in a readable way
1225 |         output_lines = [f"Asset Usage for Customer ID {formatted_customer_id}:"]
1226 |         output_lines.append("=" * 80)
1227 |         
1228 |         # Create a dictionary to organize asset usage by asset ID
1229 |         asset_usage = {}
1230 |         
1231 |         # Initialize the asset usage dictionary with basic asset info
1232 |         for result in assets_results.get('results', []):
1233 |             asset = result.get('asset', {})
1234 |             asset_id = asset.get('id')
1235 |             if asset_id:
1236 |                 asset_usage[asset_id] = {
1237 |                     'name': asset.get('name', 'Unnamed asset'),
1238 |                     'type': asset.get('type', 'Unknown'),
1239 |                     'usage': []
1240 |                 }
1241 |         
1242 |         # Add usage information from the associations
1243 |         for result in assoc_results.get('results', []):
1244 |             asset = result.get('asset', {})
1245 |             asset_id = asset.get('id')
1246 |             
1247 |             if asset_id and asset_id in asset_usage:
1248 |                 campaign = result.get('campaign', {})
1249 |                 ad_group = result.get('adGroup', {})
1250 |                 ad = result.get('adGroupAd', {}).get('ad', {}) if 'adGroupAd' in result else {}
1251 |                 asset_link = result.get('assetLink', {})
1252 |                 
1253 |                 usage_info = {
1254 |                     'campaign_id': campaign.get('id', 'N/A'),
1255 |                     'campaign_name': campaign.get('name', 'N/A'),
1256 |                     'ad_group_id': ad_group.get('id', 'N/A'),
1257 |                     'ad_group_name': ad_group.get('name', 'N/A'),
1258 |                     'ad_id': ad.get('id', 'N/A') if ad else 'N/A',
1259 |                     'ad_name': ad.get('name', 'N/A') if ad else 'N/A'
1260 |                 }
1261 |                 
1262 |                 asset_usage[asset_id]['usage'].append(usage_info)
1263 |         
1264 |         # Format the output
1265 |         for asset_id, info in asset_usage.items():
1266 |             output_lines.append(f"\nAsset ID: {asset_id}")
1267 |             output_lines.append(f"Name: {info['name']}")
1268 |             output_lines.append(f"Type: {info['type']}")
1269 |             
1270 |             if info['usage']:
1271 |                 output_lines.append("\nUsed in:")
1272 |                 output_lines.append("-" * 60)
1273 |                 output_lines.append(f"{'Campaign':<30} | {'Ad Group':<30}")
1274 |                 output_lines.append("-" * 60)
1275 |                 
1276 |                 for usage in info['usage']:
1277 |                     campaign_str = f"{usage['campaign_name']} ({usage['campaign_id']})"
1278 |                     ad_group_str = f"{usage['ad_group_name']} ({usage['ad_group_id']})"
1279 |                     
1280 |                     output_lines.append(f"{campaign_str[:30]:<30} | {ad_group_str[:30]:<30}")
1281 |             
1282 |             output_lines.append("=" * 80)
1283 |         
1284 |         return "\n".join(output_lines)
1285 |     
1286 |     except Exception as e:
1287 |         return f"Error retrieving asset usage: {str(e)}"
1288 | 
1289 | @mcp.tool()
1290 | async def analyze_image_assets(
1291 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'"),
1292 |     days: int = Field(default=30, description="Number of days to look back (7, 30, 90, etc.)")
1293 | ) -> str:
1294 |     """
1295 |     Analyze image assets with their performance metrics across campaigns.
1296 |     
1297 |     This comprehensive tool helps you understand which image assets are performing well
1298 |     by showing metrics like impressions, clicks, and conversions for each image.
1299 |     
1300 |     RECOMMENDED WORKFLOW:
1301 |     1. First run list_accounts() to get available account IDs
1302 |     2. Then run get_account_currency() to see what currency the account uses
1303 |     3. Finally run this command to analyze image asset performance
1304 |     
1305 |     Args:
1306 |         customer_id: The Google Ads customer ID as a string (10 digits, no dashes)
1307 |         days: Number of days to look back (default: 30)
1308 |         
1309 |     Returns:
1310 |         Detailed report of image assets and their performance metrics
1311 |         
1312 |     Example:
1313 |         customer_id: "1234567890"
1314 |         days: 14
1315 |     """
1316 |     # Make sure to use a valid date range format
1317 |     # Valid formats are: LAST_7_DAYS, LAST_14_DAYS, LAST_30_DAYS, etc. (with underscores)
1318 |     if days == 7:
1319 |         date_range = "LAST_7_DAYS"
1320 |     elif days == 14:
1321 |         date_range = "LAST_14_DAYS"
1322 |     elif days == 30:
1323 |         date_range = "LAST_30_DAYS"
1324 |     else:
1325 |         # Default to 30 days if not a standard range
1326 |         date_range = "LAST_30_DAYS"
1327 |         
1328 |     query = f"""
1329 |         SELECT
1330 |             asset.id,
1331 |             asset.name,
1332 |             asset.image_asset.full_size.url,
1333 |             asset.image_asset.full_size.width_pixels,
1334 |             asset.image_asset.full_size.height_pixels,
1335 |             campaign.name,
1336 |             metrics.impressions,
1337 |             metrics.clicks,
1338 |             metrics.conversions,
1339 |             metrics.cost_micros
1340 |         FROM
1341 |             campaign_asset
1342 |         WHERE
1343 |             asset.type = 'IMAGE'
1344 |             AND segments.date DURING LAST_30_DAYS
1345 |         ORDER BY
1346 |             metrics.impressions DESC
1347 |         LIMIT 200
1348 |     """
1349 |     
1350 |     try:
1351 |         creds = get_credentials()
1352 |         headers = get_headers(creds)
1353 |         
1354 |         formatted_customer_id = format_customer_id(customer_id)
1355 |         url = f"https://googleads.googleapis.com/{API_VERSION}/customers/{formatted_customer_id}/googleAds:search"
1356 |         
1357 |         payload = {"query": query}
1358 |         response = requests.post(url, headers=headers, json=payload)
1359 |         
1360 |         if response.status_code != 200:
1361 |             return f"Error analyzing image assets: {response.text}"
1362 |         
1363 |         results = response.json()
1364 |         if not results.get('results'):
1365 |             return "No image asset performance data found for this customer ID and time period."
1366 |         
1367 |         # Group results by asset ID
1368 |         assets_data = {}
1369 |         for result in results.get('results', []):
1370 |             asset = result.get('asset', {})
1371 |             asset_id = asset.get('id')
1372 |             
1373 |             if asset_id not in assets_data:
1374 |                 assets_data[asset_id] = {
1375 |                     'name': asset.get('name', f"Asset {asset_id}"),
1376 |                     'url': asset.get('imageAsset', {}).get('fullSize', {}).get('url', 'N/A'),
1377 |                     'dimensions': f"{asset.get('imageAsset', {}).get('fullSize', {}).get('widthPixels', 'N/A')} x {asset.get('imageAsset', {}).get('fullSize', {}).get('heightPixels', 'N/A')}",
1378 |                     'impressions': 0,
1379 |                     'clicks': 0,
1380 |                     'conversions': 0,
1381 |                     'cost_micros': 0,
1382 |                     'campaigns': set(),
1383 |                     'ad_groups': set()
1384 |                 }
1385 |             
1386 |             # Aggregate metrics
1387 |             metrics = result.get('metrics', {})
1388 |             assets_data[asset_id]['impressions'] += int(metrics.get('impressions', 0))
1389 |             assets_data[asset_id]['clicks'] += int(metrics.get('clicks', 0))
1390 |             assets_data[asset_id]['conversions'] += float(metrics.get('conversions', 0))
1391 |             assets_data[asset_id]['cost_micros'] += int(metrics.get('costMicros', 0))
1392 |             
1393 |             # Add campaign and ad group info
1394 |             campaign = result.get('campaign', {})
1395 |             ad_group = result.get('adGroup', {})
1396 |             
1397 |             if campaign.get('name'):
1398 |                 assets_data[asset_id]['campaigns'].add(campaign.get('name'))
1399 |             if ad_group.get('name'):
1400 |                 assets_data[asset_id]['ad_groups'].add(ad_group.get('name'))
1401 |         
1402 |         # Format the results
1403 |         output_lines = [f"Image Asset Performance Analysis for Customer ID {formatted_customer_id} (Last {days} days):"]
1404 |         output_lines.append("=" * 100)
1405 |         
1406 |         # Sort assets by impressions (highest first)
1407 |         sorted_assets = sorted(assets_data.items(), key=lambda x: x[1]['impressions'], reverse=True)
1408 |         
1409 |         for asset_id, data in sorted_assets:
1410 |             output_lines.append(f"\nAsset ID: {asset_id}")
1411 |             output_lines.append(f"Name: {data['name']}")
1412 |             output_lines.append(f"Dimensions: {data['dimensions']}")
1413 |             
1414 |             # Calculate CTR if there are impressions
1415 |             ctr = (data['clicks'] / data['impressions'] * 100) if data['impressions'] > 0 else 0
1416 |             
1417 |             # Format metrics
1418 |             output_lines.append(f"\nPerformance Metrics:")
1419 |             output_lines.append(f"  Impressions: {data['impressions']:,}")
1420 |             output_lines.append(f"  Clicks: {data['clicks']:,}")
1421 |             output_lines.append(f"  CTR: {ctr:.2f}%")
1422 |             output_lines.append(f"  Conversions: {data['conversions']:.2f}")
1423 |             output_lines.append(f"  Cost (micros): {data['cost_micros']:,}")
1424 |             
1425 |             # Show where it's used
1426 |             output_lines.append(f"\nUsed in {len(data['campaigns'])} campaigns:")
1427 |             for campaign in list(data['campaigns'])[:5]:  # Show first 5 campaigns
1428 |                 output_lines.append(f"  - {campaign}")
1429 |             if len(data['campaigns']) > 5:
1430 |                 output_lines.append(f"  - ... and {len(data['campaigns']) - 5} more")
1431 |             
1432 |             # Add URL
1433 |             if data['url'] != 'N/A':
1434 |                 output_lines.append(f"\nImage URL: {data['url']}")
1435 |             
1436 |             output_lines.append("-" * 100)
1437 |         
1438 |         return "\n".join(output_lines)
1439 |     
1440 |     except Exception as e:
1441 |         return f"Error analyzing image assets: {str(e)}"
1442 | 
1443 | @mcp.tool()
1444 | async def list_resources(
1445 |     customer_id: str = Field(description="Google Ads customer ID (10 digits, no dashes). Example: '9873186703'")
1446 | ) -> str:
1447 |     """
1448 |     List valid resources that can be used in GAQL FROM clauses.
1449 |     
1450 |     Args:
1451 |         customer_id: The Google Ads customer ID as a string
1452 |         
1453 |     Returns:
1454 |         Formatted list of valid resources
1455 |     """
1456 |     # Example query that lists some common resources
1457 |     # This might need to be adjusted based on what's available in your API version
1458 |     query = """
1459 |         SELECT
1460 |             google_ads_field.name,
1461 |             google_ads_field.category,
1462 |             google_ads_field.data_type
1463 |         FROM
1464 |             google_ads_field
1465 |         WHERE
1466 |             google_ads_field.category = 'RESOURCE'
1467 |         ORDER BY
1468 |             google_ads_field.name
1469 |     """
1470 |     
1471 |     # Use your existing run_gaql function to execute this query
1472 |     return await run_gaql(customer_id, query)
1473 | 
1474 | if __name__ == "__main__":
1475 |     # Start the MCP server on stdio transport
1476 |     mcp.run(transport="stdio")
1477 | 
```