This is page 52 of 52. Use http://codebase.md/eyaltoledano/claude-task-master?lines=true&page={x} to view the full context. # Directory Structure ``` ├── .changeset │ ├── config.json │ └── README.md ├── .claude │ ├── agents │ │ ├── task-checker.md │ │ ├── task-executor.md │ │ └── task-orchestrator.md │ ├── commands │ │ ├── dedupe.md │ │ └── tm │ │ ├── add-dependency │ │ │ └── add-dependency.md │ │ ├── add-subtask │ │ │ ├── add-subtask.md │ │ │ └── convert-task-to-subtask.md │ │ ├── add-task │ │ │ └── add-task.md │ │ ├── analyze-complexity │ │ │ └── analyze-complexity.md │ │ ├── complexity-report │ │ │ └── complexity-report.md │ │ ├── expand │ │ │ ├── expand-all-tasks.md │ │ │ └── expand-task.md │ │ ├── fix-dependencies │ │ │ └── fix-dependencies.md │ │ ├── generate │ │ │ └── generate-tasks.md │ │ ├── help.md │ │ ├── init │ │ │ ├── init-project-quick.md │ │ │ └── init-project.md │ │ ├── learn.md │ │ ├── list │ │ │ ├── list-tasks-by-status.md │ │ │ ├── list-tasks-with-subtasks.md │ │ │ └── list-tasks.md │ │ ├── models │ │ │ ├── setup-models.md │ │ │ └── view-models.md │ │ ├── next │ │ │ └── next-task.md │ │ ├── parse-prd │ │ │ ├── parse-prd-with-research.md │ │ │ └── parse-prd.md │ │ ├── remove-dependency │ │ │ └── remove-dependency.md │ │ ├── remove-subtask │ │ │ └── remove-subtask.md │ │ ├── remove-subtasks │ │ │ ├── remove-all-subtasks.md │ │ │ └── remove-subtasks.md │ │ ├── remove-task │ │ │ └── remove-task.md │ │ ├── set-status │ │ │ ├── to-cancelled.md │ │ │ ├── to-deferred.md │ │ │ ├── to-done.md │ │ │ ├── to-in-progress.md │ │ │ ├── to-pending.md │ │ │ └── to-review.md │ │ ├── setup │ │ │ ├── install-taskmaster.md │ │ │ └── quick-install-taskmaster.md │ │ ├── show │ │ │ └── show-task.md │ │ ├── status │ │ │ └── project-status.md │ │ ├── sync-readme │ │ │ └── sync-readme.md │ │ ├── tm-main.md │ │ ├── update │ │ │ ├── update-single-task.md │ │ │ ├── update-task.md │ │ │ └── update-tasks-from-id.md │ │ ├── utils │ │ │ └── analyze-project.md │ │ ├── validate-dependencies │ │ │ └── validate-dependencies.md │ │ └── workflows │ │ ├── auto-implement-tasks.md │ │ ├── command-pipeline.md │ │ └── smart-workflow.md │ └── TM_COMMANDS_GUIDE.md ├── .coderabbit.yaml ├── .cursor │ ├── mcp.json │ └── rules │ ├── ai_providers.mdc │ ├── ai_services.mdc │ ├── architecture.mdc │ ├── changeset.mdc │ ├── commands.mdc │ ├── context_gathering.mdc │ ├── cursor_rules.mdc │ ├── dependencies.mdc │ ├── dev_workflow.mdc │ ├── git_workflow.mdc │ ├── glossary.mdc │ ├── mcp.mdc │ ├── new_features.mdc │ ├── self_improve.mdc │ ├── tags.mdc │ ├── taskmaster.mdc │ ├── tasks.mdc │ ├── telemetry.mdc │ ├── test_workflow.mdc │ ├── tests.mdc │ ├── ui.mdc │ └── utilities.mdc ├── .cursorignore ├── .env.example ├── .github │ ├── ISSUE_TEMPLATE │ │ ├── bug_report.md │ │ ├── enhancements---feature-requests.md │ │ └── feedback.md │ ├── PULL_REQUEST_TEMPLATE │ │ ├── bugfix.md │ │ ├── config.yml │ │ ├── feature.md │ │ └── integration.md │ ├── PULL_REQUEST_TEMPLATE.md │ ├── scripts │ │ ├── auto-close-duplicates.mjs │ │ ├── backfill-duplicate-comments.mjs │ │ ├── check-pre-release-mode.mjs │ │ ├── parse-metrics.mjs │ │ ├── release.mjs │ │ ├── tag-extension.mjs │ │ └── utils.mjs │ └── workflows │ ├── auto-close-duplicates.yml │ ├── backfill-duplicate-comments.yml │ ├── ci.yml │ ├── claude-dedupe-issues.yml │ ├── claude-docs-trigger.yml │ ├── claude-docs-updater.yml │ ├── claude-issue-triage.yml │ ├── claude.yml │ ├── extension-ci.yml │ ├── extension-release.yml │ ├── log-issue-events.yml │ ├── pre-release.yml │ ├── release-check.yml │ ├── release.yml │ ├── update-models-md.yml │ └── weekly-metrics-discord.yml ├── .gitignore ├── .kiro │ ├── hooks │ │ ├── tm-code-change-task-tracker.kiro.hook │ │ ├── tm-complexity-analyzer.kiro.hook │ │ ├── tm-daily-standup-assistant.kiro.hook │ │ ├── tm-git-commit-task-linker.kiro.hook │ │ ├── tm-pr-readiness-checker.kiro.hook │ │ ├── tm-task-dependency-auto-progression.kiro.hook │ │ └── tm-test-success-task-completer.kiro.hook │ ├── settings │ │ └── mcp.json │ └── steering │ ├── dev_workflow.md │ ├── kiro_rules.md │ ├── self_improve.md │ ├── taskmaster_hooks_workflow.md │ └── taskmaster.md ├── .manypkg.json ├── .mcp.json ├── .npmignore ├── .nvmrc ├── .taskmaster │ ├── CLAUDE.md │ ├── config.json │ ├── docs │ │ ├── MIGRATION-ROADMAP.md │ │ ├── prd-tm-start.txt │ │ ├── prd.txt │ │ ├── README.md │ │ ├── research │ │ │ ├── 2025-06-14_how-can-i-improve-the-scope-up-and-scope-down-comm.md │ │ │ ├── 2025-06-14_should-i-be-using-any-specific-libraries-for-this.md │ │ │ ├── 2025-06-14_test-save-functionality.md │ │ │ ├── 2025-06-14_test-the-fix-for-duplicate-saves-final-test.md │ │ │ └── 2025-08-01_do-we-need-to-add-new-commands-or-can-we-just-weap.md │ │ ├── task-template-importing-prd.txt │ │ ├── test-prd.txt │ │ └── tm-core-phase-1.txt │ ├── reports │ │ ├── task-complexity-report_cc-kiro-hooks.json │ │ ├── task-complexity-report_test-prd-tag.json │ │ ├── task-complexity-report_tm-core-phase-1.json │ │ ├── task-complexity-report.json │ │ └── tm-core-complexity.json │ ├── state.json │ ├── tasks │ │ ├── task_001_tm-start.txt │ │ ├── task_002_tm-start.txt │ │ ├── task_003_tm-start.txt │ │ ├── task_004_tm-start.txt │ │ ├── task_007_tm-start.txt │ │ └── tasks.json │ └── templates │ └── example_prd.txt ├── .vscode │ ├── extensions.json │ └── settings.json ├── apps │ ├── cli │ │ ├── CHANGELOG.md │ │ ├── package.json │ │ ├── src │ │ │ ├── commands │ │ │ │ ├── auth.command.ts │ │ │ │ ├── context.command.ts │ │ │ │ ├── list.command.ts │ │ │ │ ├── set-status.command.ts │ │ │ │ ├── show.command.ts │ │ │ │ └── start.command.ts │ │ │ ├── index.ts │ │ │ ├── ui │ │ │ │ ├── components │ │ │ │ │ ├── dashboard.component.ts │ │ │ │ │ ├── header.component.ts │ │ │ │ │ ├── index.ts │ │ │ │ │ ├── next-task.component.ts │ │ │ │ │ ├── suggested-steps.component.ts │ │ │ │ │ └── task-detail.component.ts │ │ │ │ └── index.ts │ │ │ └── utils │ │ │ ├── auto-update.ts │ │ │ └── ui.ts │ │ └── tsconfig.json │ ├── docs │ │ ├── archive │ │ │ ├── ai-client-utils-example.mdx │ │ │ ├── ai-development-workflow.mdx │ │ │ ├── command-reference.mdx │ │ │ ├── configuration.mdx │ │ │ ├── cursor-setup.mdx │ │ │ ├── examples.mdx │ │ │ └── Installation.mdx │ │ ├── best-practices │ │ │ ├── advanced-tasks.mdx │ │ │ ├── configuration-advanced.mdx │ │ │ └── index.mdx │ │ ├── capabilities │ │ │ ├── cli-root-commands.mdx │ │ │ ├── index.mdx │ │ │ ├── mcp.mdx │ │ │ └── task-structure.mdx │ │ ├── CHANGELOG.md │ │ ├── docs.json │ │ ├── favicon.svg │ │ ├── getting-started │ │ │ ├── contribute.mdx │ │ │ ├── faq.mdx │ │ │ └── quick-start │ │ │ ├── configuration-quick.mdx │ │ │ ├── execute-quick.mdx │ │ │ ├── installation.mdx │ │ │ ├── moving-forward.mdx │ │ │ ├── prd-quick.mdx │ │ │ ├── quick-start.mdx │ │ │ ├── requirements.mdx │ │ │ ├── rules-quick.mdx │ │ │ └── tasks-quick.mdx │ │ ├── introduction.mdx │ │ ├── licensing.md │ │ ├── logo │ │ │ ├── dark.svg │ │ │ ├── light.svg │ │ │ └── task-master-logo.png │ │ ├── package.json │ │ ├── README.md │ │ ├── style.css │ │ ├── vercel.json │ │ └── whats-new.mdx │ └── extension │ ├── .vscodeignore │ ├── assets │ │ ├── banner.png │ │ ├── icon-dark.svg │ │ ├── icon-light.svg │ │ ├── icon.png │ │ ├── screenshots │ │ │ ├── kanban-board.png │ │ │ └── task-details.png │ │ └── sidebar-icon.svg │ ├── CHANGELOG.md │ ├── components.json │ ├── docs │ │ ├── extension-CI-setup.md │ │ └── extension-development-guide.md │ ├── esbuild.js │ ├── LICENSE │ ├── package.json │ ├── package.mjs │ ├── package.publish.json │ ├── README.md │ ├── src │ │ ├── components │ │ │ ├── ConfigView.tsx │ │ │ ├── constants.ts │ │ │ ├── TaskDetails │ │ │ │ ├── AIActionsSection.tsx │ │ │ │ ├── DetailsSection.tsx │ │ │ │ ├── PriorityBadge.tsx │ │ │ │ ├── SubtasksSection.tsx │ │ │ │ ├── TaskMetadataSidebar.tsx │ │ │ │ └── useTaskDetails.ts │ │ │ ├── TaskDetailsView.tsx │ │ │ ├── TaskMasterLogo.tsx │ │ │ └── ui │ │ │ ├── badge.tsx │ │ │ ├── breadcrumb.tsx │ │ │ ├── button.tsx │ │ │ ├── card.tsx │ │ │ ├── collapsible.tsx │ │ │ ├── CollapsibleSection.tsx │ │ │ ├── dropdown-menu.tsx │ │ │ ├── label.tsx │ │ │ ├── scroll-area.tsx │ │ │ ├── separator.tsx │ │ │ ├── shadcn-io │ │ │ │ └── kanban │ │ │ │ └── index.tsx │ │ │ └── textarea.tsx │ │ ├── extension.ts │ │ ├── index.ts │ │ ├── lib │ │ │ └── utils.ts │ │ ├── services │ │ │ ├── config-service.ts │ │ │ ├── error-handler.ts │ │ │ ├── notification-preferences.ts │ │ │ ├── polling-service.ts │ │ │ ├── polling-strategies.ts │ │ │ ├── sidebar-webview-manager.ts │ │ │ ├── task-repository.ts │ │ │ ├── terminal-manager.ts │ │ │ └── webview-manager.ts │ │ ├── test │ │ │ └── extension.test.ts │ │ ├── utils │ │ │ ├── configManager.ts │ │ │ ├── connectionManager.ts │ │ │ ├── errorHandler.ts │ │ │ ├── event-emitter.ts │ │ │ ├── logger.ts │ │ │ ├── mcpClient.ts │ │ │ ├── notificationPreferences.ts │ │ │ └── task-master-api │ │ │ ├── cache │ │ │ │ └── cache-manager.ts │ │ │ ├── index.ts │ │ │ ├── mcp-client.ts │ │ │ ├── transformers │ │ │ │ └── task-transformer.ts │ │ │ └── types │ │ │ └── index.ts │ │ └── webview │ │ ├── App.tsx │ │ ├── components │ │ │ ├── AppContent.tsx │ │ │ ├── EmptyState.tsx │ │ │ ├── ErrorBoundary.tsx │ │ │ ├── PollingStatus.tsx │ │ │ ├── PriorityBadge.tsx │ │ │ ├── SidebarView.tsx │ │ │ ├── TagDropdown.tsx │ │ │ ├── TaskCard.tsx │ │ │ ├── TaskEditModal.tsx │ │ │ ├── TaskMasterKanban.tsx │ │ │ ├── ToastContainer.tsx │ │ │ └── ToastNotification.tsx │ │ ├── constants │ │ │ └── index.ts │ │ ├── contexts │ │ │ └── VSCodeContext.tsx │ │ ├── hooks │ │ │ ├── useTaskQueries.ts │ │ │ ├── useVSCodeMessages.ts │ │ │ └── useWebviewHeight.ts │ │ ├── index.css │ │ ├── index.tsx │ │ ├── providers │ │ │ └── QueryProvider.tsx │ │ ├── reducers │ │ │ └── appReducer.ts │ │ ├── sidebar.tsx │ │ ├── types │ │ │ └── index.ts │ │ └── utils │ │ ├── logger.ts │ │ └── toast.ts │ └── tsconfig.json ├── assets │ ├── .windsurfrules │ ├── AGENTS.md │ ├── claude │ │ ├── agents │ │ │ ├── task-checker.md │ │ │ ├── task-executor.md │ │ │ └── task-orchestrator.md │ │ ├── commands │ │ │ └── tm │ │ │ ├── add-dependency │ │ │ │ └── add-dependency.md │ │ │ ├── add-subtask │ │ │ │ ├── add-subtask.md │ │ │ │ └── convert-task-to-subtask.md │ │ │ ├── add-task │ │ │ │ └── add-task.md │ │ │ ├── analyze-complexity │ │ │ │ └── analyze-complexity.md │ │ │ ├── clear-subtasks │ │ │ │ ├── clear-all-subtasks.md │ │ │ │ └── clear-subtasks.md │ │ │ ├── complexity-report │ │ │ │ └── complexity-report.md │ │ │ ├── expand │ │ │ │ ├── expand-all-tasks.md │ │ │ │ └── expand-task.md │ │ │ ├── fix-dependencies │ │ │ │ └── fix-dependencies.md │ │ │ ├── generate │ │ │ │ └── generate-tasks.md │ │ │ ├── help.md │ │ │ ├── init │ │ │ │ ├── init-project-quick.md │ │ │ │ └── init-project.md │ │ │ ├── learn.md │ │ │ ├── list │ │ │ │ ├── list-tasks-by-status.md │ │ │ │ ├── list-tasks-with-subtasks.md │ │ │ │ └── list-tasks.md │ │ │ ├── models │ │ │ │ ├── setup-models.md │ │ │ │ └── view-models.md │ │ │ ├── next │ │ │ │ └── next-task.md │ │ │ ├── parse-prd │ │ │ │ ├── parse-prd-with-research.md │ │ │ │ └── parse-prd.md │ │ │ ├── remove-dependency │ │ │ │ └── remove-dependency.md │ │ │ ├── remove-subtask │ │ │ │ └── remove-subtask.md │ │ │ ├── remove-subtasks │ │ │ │ ├── remove-all-subtasks.md │ │ │ │ └── remove-subtasks.md │ │ │ ├── remove-task │ │ │ │ └── remove-task.md │ │ │ ├── set-status │ │ │ │ ├── to-cancelled.md │ │ │ │ ├── to-deferred.md │ │ │ │ ├── to-done.md │ │ │ │ ├── to-in-progress.md │ │ │ │ ├── to-pending.md │ │ │ │ └── to-review.md │ │ │ ├── setup │ │ │ │ ├── install-taskmaster.md │ │ │ │ └── quick-install-taskmaster.md │ │ │ ├── show │ │ │ │ └── show-task.md │ │ │ ├── status │ │ │ │ └── project-status.md │ │ │ ├── sync-readme │ │ │ │ └── sync-readme.md │ │ │ ├── tm-main.md │ │ │ ├── update │ │ │ │ ├── update-single-task.md │ │ │ │ ├── update-task.md │ │ │ │ └── update-tasks-from-id.md │ │ │ ├── utils │ │ │ │ └── analyze-project.md │ │ │ ├── validate-dependencies │ │ │ │ └── validate-dependencies.md │ │ │ └── workflows │ │ │ ├── auto-implement-tasks.md │ │ │ ├── command-pipeline.md │ │ │ └── smart-workflow.md │ │ └── TM_COMMANDS_GUIDE.md │ ├── config.json │ ├── env.example │ ├── example_prd.txt │ ├── gitignore │ ├── kiro-hooks │ │ ├── tm-code-change-task-tracker.kiro.hook │ │ ├── tm-complexity-analyzer.kiro.hook │ │ ├── tm-daily-standup-assistant.kiro.hook │ │ ├── tm-git-commit-task-linker.kiro.hook │ │ ├── tm-pr-readiness-checker.kiro.hook │ │ ├── tm-task-dependency-auto-progression.kiro.hook │ │ └── tm-test-success-task-completer.kiro.hook │ ├── roocode │ │ ├── .roo │ │ │ ├── rules-architect │ │ │ │ └── architect-rules │ │ │ ├── rules-ask │ │ │ │ └── ask-rules │ │ │ ├── rules-code │ │ │ │ └── code-rules │ │ │ ├── rules-debug │ │ │ │ └── debug-rules │ │ │ ├── rules-orchestrator │ │ │ │ └── orchestrator-rules │ │ │ └── rules-test │ │ │ └── test-rules │ │ └── .roomodes │ ├── rules │ │ ├── cursor_rules.mdc │ │ ├── dev_workflow.mdc │ │ ├── self_improve.mdc │ │ ├── taskmaster_hooks_workflow.mdc │ │ └── taskmaster.mdc │ └── scripts_README.md ├── bin │ └── task-master.js ├── biome.json ├── CHANGELOG.md ├── CLAUDE.md ├── context │ ├── chats │ │ ├── add-task-dependencies-1.md │ │ └── max-min-tokens.txt.md │ ├── fastmcp-core.txt │ ├── fastmcp-docs.txt │ ├── MCP_INTEGRATION.md │ ├── mcp-js-sdk-docs.txt │ ├── mcp-protocol-repo.txt │ ├── mcp-protocol-schema-03262025.json │ └── mcp-protocol-spec.txt ├── CONTRIBUTING.md ├── docs │ ├── CLI-COMMANDER-PATTERN.md │ ├── command-reference.md │ ├── configuration.md │ ├── contributor-docs │ │ └── testing-roo-integration.md │ ├── cross-tag-task-movement.md │ ├── examples │ │ └── claude-code-usage.md │ ├── examples.md │ ├── licensing.md │ ├── mcp-provider-guide.md │ ├── mcp-provider.md │ ├── migration-guide.md │ ├── models.md │ ├── providers │ │ └── gemini-cli.md │ ├── README.md │ ├── scripts │ │ └── models-json-to-markdown.js │ ├── task-structure.md │ └── tutorial.md ├── images │ └── logo.png ├── index.js ├── jest.config.js ├── jest.resolver.cjs ├── LICENSE ├── llms-install.md ├── mcp-server │ ├── server.js │ └── src │ ├── core │ │ ├── __tests__ │ │ │ └── context-manager.test.js │ │ ├── context-manager.js │ │ ├── direct-functions │ │ │ ├── add-dependency.js │ │ │ ├── add-subtask.js │ │ │ ├── add-tag.js │ │ │ ├── add-task.js │ │ │ ├── analyze-task-complexity.js │ │ │ ├── cache-stats.js │ │ │ ├── clear-subtasks.js │ │ │ ├── complexity-report.js │ │ │ ├── copy-tag.js │ │ │ ├── create-tag-from-branch.js │ │ │ ├── delete-tag.js │ │ │ ├── expand-all-tasks.js │ │ │ ├── expand-task.js │ │ │ ├── fix-dependencies.js │ │ │ ├── generate-task-files.js │ │ │ ├── initialize-project.js │ │ │ ├── list-tags.js │ │ │ ├── list-tasks.js │ │ │ ├── models.js │ │ │ ├── move-task-cross-tag.js │ │ │ ├── move-task.js │ │ │ ├── next-task.js │ │ │ ├── parse-prd.js │ │ │ ├── remove-dependency.js │ │ │ ├── remove-subtask.js │ │ │ ├── remove-task.js │ │ │ ├── rename-tag.js │ │ │ ├── research.js │ │ │ ├── response-language.js │ │ │ ├── rules.js │ │ │ ├── scope-down.js │ │ │ ├── scope-up.js │ │ │ ├── set-task-status.js │ │ │ ├── show-task.js │ │ │ ├── update-subtask-by-id.js │ │ │ ├── update-task-by-id.js │ │ │ ├── update-tasks.js │ │ │ ├── use-tag.js │ │ │ └── validate-dependencies.js │ │ ├── task-master-core.js │ │ └── utils │ │ ├── env-utils.js │ │ └── path-utils.js │ ├── custom-sdk │ │ ├── errors.js │ │ ├── index.js │ │ ├── json-extractor.js │ │ ├── language-model.js │ │ ├── message-converter.js │ │ └── schema-converter.js │ ├── index.js │ ├── logger.js │ ├── providers │ │ └── mcp-provider.js │ └── tools │ ├── add-dependency.js │ ├── add-subtask.js │ ├── add-tag.js │ ├── add-task.js │ ├── analyze.js │ ├── clear-subtasks.js │ ├── complexity-report.js │ ├── copy-tag.js │ ├── delete-tag.js │ ├── expand-all.js │ ├── expand-task.js │ ├── fix-dependencies.js │ ├── generate.js │ ├── get-operation-status.js │ ├── get-task.js │ ├── get-tasks.js │ ├── index.js │ ├── initialize-project.js │ ├── list-tags.js │ ├── models.js │ ├── move-task.js │ ├── next-task.js │ ├── parse-prd.js │ ├── remove-dependency.js │ ├── remove-subtask.js │ ├── remove-task.js │ ├── rename-tag.js │ ├── research.js │ ├── response-language.js │ ├── rules.js │ ├── scope-down.js │ ├── scope-up.js │ ├── set-task-status.js │ ├── update-subtask.js │ ├── update-task.js │ ├── update.js │ ├── use-tag.js │ ├── utils.js │ └── validate-dependencies.js ├── mcp-test.js ├── output.json ├── package-lock.json ├── package.json ├── packages │ ├── build-config │ │ ├── CHANGELOG.md │ │ ├── package.json │ │ ├── src │ │ │ └── tsdown.base.ts │ │ └── tsconfig.json │ └── tm-core │ ├── .gitignore │ ├── CHANGELOG.md │ ├── docs │ │ └── listTasks-architecture.md │ ├── package.json │ ├── POC-STATUS.md │ ├── README.md │ ├── src │ │ ├── auth │ │ │ ├── auth-manager.test.ts │ │ │ ├── auth-manager.ts │ │ │ ├── config.ts │ │ │ ├── credential-store.test.ts │ │ │ ├── credential-store.ts │ │ │ ├── index.ts │ │ │ ├── oauth-service.ts │ │ │ ├── supabase-session-storage.ts │ │ │ └── types.ts │ │ ├── clients │ │ │ ├── index.ts │ │ │ └── supabase-client.ts │ │ ├── config │ │ │ ├── config-manager.spec.ts │ │ │ ├── config-manager.ts │ │ │ ├── index.ts │ │ │ └── services │ │ │ ├── config-loader.service.spec.ts │ │ │ ├── config-loader.service.ts │ │ │ ├── config-merger.service.spec.ts │ │ │ ├── config-merger.service.ts │ │ │ ├── config-persistence.service.spec.ts │ │ │ ├── config-persistence.service.ts │ │ │ ├── environment-config-provider.service.spec.ts │ │ │ ├── environment-config-provider.service.ts │ │ │ ├── index.ts │ │ │ ├── runtime-state-manager.service.spec.ts │ │ │ └── runtime-state-manager.service.ts │ │ ├── constants │ │ │ └── index.ts │ │ ├── entities │ │ │ └── task.entity.ts │ │ ├── errors │ │ │ ├── index.ts │ │ │ └── task-master-error.ts │ │ ├── executors │ │ │ ├── base-executor.ts │ │ │ ├── claude-executor.ts │ │ │ ├── executor-factory.ts │ │ │ ├── executor-service.ts │ │ │ ├── index.ts │ │ │ └── types.ts │ │ ├── index.ts │ │ ├── interfaces │ │ │ ├── ai-provider.interface.ts │ │ │ ├── configuration.interface.ts │ │ │ ├── index.ts │ │ │ └── storage.interface.ts │ │ ├── logger │ │ │ ├── factory.ts │ │ │ ├── index.ts │ │ │ └── logger.ts │ │ ├── mappers │ │ │ └── TaskMapper.ts │ │ ├── parser │ │ │ └── index.ts │ │ ├── providers │ │ │ ├── ai │ │ │ │ ├── base-provider.ts │ │ │ │ └── index.ts │ │ │ └── index.ts │ │ ├── repositories │ │ │ ├── supabase-task-repository.ts │ │ │ └── task-repository.interface.ts │ │ ├── services │ │ │ ├── index.ts │ │ │ ├── organization.service.ts │ │ │ ├── task-execution-service.ts │ │ │ └── task-service.ts │ │ ├── storage │ │ │ ├── api-storage.ts │ │ │ ├── file-storage │ │ │ │ ├── file-operations.ts │ │ │ │ ├── file-storage.ts │ │ │ │ ├── format-handler.ts │ │ │ │ ├── index.ts │ │ │ │ └── path-resolver.ts │ │ │ ├── index.ts │ │ │ └── storage-factory.ts │ │ ├── subpath-exports.test.ts │ │ ├── task-master-core.ts │ │ ├── types │ │ │ ├── database.types.ts │ │ │ ├── index.ts │ │ │ └── legacy.ts │ │ └── utils │ │ ├── id-generator.ts │ │ └── index.ts │ ├── tests │ │ ├── integration │ │ │ └── list-tasks.test.ts │ │ ├── mocks │ │ │ └── mock-provider.ts │ │ ├── setup.ts │ │ └── unit │ │ ├── base-provider.test.ts │ │ ├── executor.test.ts │ │ └── smoke.test.ts │ ├── tsconfig.json │ └── vitest.config.ts ├── README-task-master.md ├── README.md ├── scripts │ ├── dev.js │ ├── init.js │ ├── modules │ │ ├── ai-services-unified.js │ │ ├── commands.js │ │ ├── config-manager.js │ │ ├── dependency-manager.js │ │ ├── index.js │ │ ├── prompt-manager.js │ │ ├── supported-models.json │ │ ├── sync-readme.js │ │ ├── task-manager │ │ │ ├── add-subtask.js │ │ │ ├── add-task.js │ │ │ ├── analyze-task-complexity.js │ │ │ ├── clear-subtasks.js │ │ │ ├── expand-all-tasks.js │ │ │ ├── expand-task.js │ │ │ ├── find-next-task.js │ │ │ ├── generate-task-files.js │ │ │ ├── is-task-dependent.js │ │ │ ├── list-tasks.js │ │ │ ├── migrate.js │ │ │ ├── models.js │ │ │ ├── move-task.js │ │ │ ├── parse-prd │ │ │ │ ├── index.js │ │ │ │ ├── parse-prd-config.js │ │ │ │ ├── parse-prd-helpers.js │ │ │ │ ├── parse-prd-non-streaming.js │ │ │ │ ├── parse-prd-streaming.js │ │ │ │ └── parse-prd.js │ │ │ ├── remove-subtask.js │ │ │ ├── remove-task.js │ │ │ ├── research.js │ │ │ ├── response-language.js │ │ │ ├── scope-adjustment.js │ │ │ ├── set-task-status.js │ │ │ ├── tag-management.js │ │ │ ├── task-exists.js │ │ │ ├── update-single-task-status.js │ │ │ ├── update-subtask-by-id.js │ │ │ ├── update-task-by-id.js │ │ │ └── update-tasks.js │ │ ├── task-manager.js │ │ ├── ui.js │ │ ├── update-config-tokens.js │ │ ├── utils │ │ │ ├── contextGatherer.js │ │ │ ├── fuzzyTaskSearch.js │ │ │ └── git-utils.js │ │ └── utils.js │ ├── task-complexity-report.json │ ├── test-claude-errors.js │ └── test-claude.js ├── src │ ├── ai-providers │ │ ├── anthropic.js │ │ ├── azure.js │ │ ├── base-provider.js │ │ ├── bedrock.js │ │ ├── claude-code.js │ │ ├── custom-sdk │ │ │ ├── claude-code │ │ │ │ ├── errors.js │ │ │ │ ├── index.js │ │ │ │ ├── json-extractor.js │ │ │ │ ├── language-model.js │ │ │ │ ├── message-converter.js │ │ │ │ └── types.js │ │ │ └── grok-cli │ │ │ ├── errors.js │ │ │ ├── index.js │ │ │ ├── json-extractor.js │ │ │ ├── language-model.js │ │ │ ├── message-converter.js │ │ │ └── types.js │ │ ├── gemini-cli.js │ │ ├── google-vertex.js │ │ ├── google.js │ │ ├── grok-cli.js │ │ ├── groq.js │ │ ├── index.js │ │ ├── ollama.js │ │ ├── openai.js │ │ ├── openrouter.js │ │ ├── perplexity.js │ │ └── xai.js │ ├── constants │ │ ├── commands.js │ │ ├── paths.js │ │ ├── profiles.js │ │ ├── providers.js │ │ ├── rules-actions.js │ │ ├── task-priority.js │ │ └── task-status.js │ ├── profiles │ │ ├── amp.js │ │ ├── base-profile.js │ │ ├── claude.js │ │ ├── cline.js │ │ ├── codex.js │ │ ├── cursor.js │ │ ├── gemini.js │ │ ├── index.js │ │ ├── kilo.js │ │ ├── kiro.js │ │ ├── opencode.js │ │ ├── roo.js │ │ ├── trae.js │ │ ├── vscode.js │ │ ├── windsurf.js │ │ └── zed.js │ ├── progress │ │ ├── base-progress-tracker.js │ │ ├── cli-progress-factory.js │ │ ├── parse-prd-tracker.js │ │ ├── progress-tracker-builder.js │ │ └── tracker-ui.js │ ├── prompts │ │ ├── add-task.json │ │ ├── analyze-complexity.json │ │ ├── expand-task.json │ │ ├── parse-prd.json │ │ ├── README.md │ │ ├── research.json │ │ ├── schemas │ │ │ ├── parameter.schema.json │ │ │ ├── prompt-template.schema.json │ │ │ ├── README.md │ │ │ └── variant.schema.json │ │ ├── update-subtask.json │ │ ├── update-task.json │ │ └── update-tasks.json │ ├── provider-registry │ │ └── index.js │ ├── task-master.js │ ├── ui │ │ ├── confirm.js │ │ ├── indicators.js │ │ └── parse-prd.js │ └── utils │ ├── asset-resolver.js │ ├── create-mcp-config.js │ ├── format.js │ ├── getVersion.js │ ├── logger-utils.js │ ├── manage-gitignore.js │ ├── path-utils.js │ ├── profiles.js │ ├── rule-transformer.js │ ├── stream-parser.js │ └── timeout-manager.js ├── test-clean-tags.js ├── test-config-manager.js ├── test-prd.txt ├── test-tag-functions.js ├── test-version-check-full.js ├── test-version-check.js ├── tests │ ├── e2e │ │ ├── e2e_helpers.sh │ │ ├── parse_llm_output.cjs │ │ ├── run_e2e.sh │ │ ├── run_fallback_verification.sh │ │ └── test_llm_analysis.sh │ ├── fixture │ │ └── test-tasks.json │ ├── fixtures │ │ ├── .taskmasterconfig │ │ ├── sample-claude-response.js │ │ ├── sample-prd.txt │ │ └── sample-tasks.js │ ├── integration │ │ ├── claude-code-optional.test.js │ │ ├── cli │ │ │ ├── commands.test.js │ │ │ ├── complex-cross-tag-scenarios.test.js │ │ │ └── move-cross-tag.test.js │ │ ├── manage-gitignore.test.js │ │ ├── mcp-server │ │ │ └── direct-functions.test.js │ │ ├── move-task-cross-tag.integration.test.js │ │ ├── move-task-simple.integration.test.js │ │ └── profiles │ │ ├── amp-init-functionality.test.js │ │ ├── claude-init-functionality.test.js │ │ ├── cline-init-functionality.test.js │ │ ├── codex-init-functionality.test.js │ │ ├── cursor-init-functionality.test.js │ │ ├── gemini-init-functionality.test.js │ │ ├── opencode-init-functionality.test.js │ │ ├── roo-files-inclusion.test.js │ │ ├── roo-init-functionality.test.js │ │ ├── rules-files-inclusion.test.js │ │ ├── trae-init-functionality.test.js │ │ ├── vscode-init-functionality.test.js │ │ └── windsurf-init-functionality.test.js │ ├── manual │ │ ├── progress │ │ │ ├── parse-prd-analysis.js │ │ │ ├── test-parse-prd.js │ │ │ └── TESTING_GUIDE.md │ │ └── prompts │ │ ├── prompt-test.js │ │ └── README.md │ ├── README.md │ ├── setup.js │ └── unit │ ├── ai-providers │ │ ├── claude-code.test.js │ │ ├── custom-sdk │ │ │ └── claude-code │ │ │ └── language-model.test.js │ │ ├── gemini-cli.test.js │ │ ├── mcp-components.test.js │ │ └── openai.test.js │ ├── ai-services-unified.test.js │ ├── commands.test.js │ ├── config-manager.test.js │ ├── config-manager.test.mjs │ ├── dependency-manager.test.js │ ├── init.test.js │ ├── initialize-project.test.js │ ├── kebab-case-validation.test.js │ ├── manage-gitignore.test.js │ ├── mcp │ │ └── tools │ │ ├── __mocks__ │ │ │ └── move-task.js │ │ ├── add-task.test.js │ │ ├── analyze-complexity.test.js │ │ ├── expand-all.test.js │ │ ├── get-tasks.test.js │ │ ├── initialize-project.test.js │ │ ├── move-task-cross-tag-options.test.js │ │ ├── move-task-cross-tag.test.js │ │ └── remove-task.test.js │ ├── mcp-providers │ │ ├── mcp-components.test.js │ │ └── mcp-provider.test.js │ ├── parse-prd.test.js │ ├── profiles │ │ ├── amp-integration.test.js │ │ ├── claude-integration.test.js │ │ ├── cline-integration.test.js │ │ ├── codex-integration.test.js │ │ ├── cursor-integration.test.js │ │ ├── gemini-integration.test.js │ │ ├── kilo-integration.test.js │ │ ├── kiro-integration.test.js │ │ ├── mcp-config-validation.test.js │ │ ├── opencode-integration.test.js │ │ ├── profile-safety-check.test.js │ │ ├── roo-integration.test.js │ │ ├── rule-transformer-cline.test.js │ │ ├── rule-transformer-cursor.test.js │ │ ├── rule-transformer-gemini.test.js │ │ ├── rule-transformer-kilo.test.js │ │ ├── rule-transformer-kiro.test.js │ │ ├── rule-transformer-opencode.test.js │ │ ├── rule-transformer-roo.test.js │ │ ├── rule-transformer-trae.test.js │ │ ├── rule-transformer-vscode.test.js │ │ ├── rule-transformer-windsurf.test.js │ │ ├── rule-transformer-zed.test.js │ │ ├── rule-transformer.test.js │ │ ├── selective-profile-removal.test.js │ │ ├── subdirectory-support.test.js │ │ ├── trae-integration.test.js │ │ ├── vscode-integration.test.js │ │ ├── windsurf-integration.test.js │ │ └── zed-integration.test.js │ ├── progress │ │ └── base-progress-tracker.test.js │ ├── prompt-manager.test.js │ ├── prompts │ │ └── expand-task-prompt.test.js │ ├── providers │ │ └── provider-registry.test.js │ ├── scripts │ │ └── modules │ │ ├── commands │ │ │ ├── move-cross-tag.test.js │ │ │ └── README.md │ │ ├── dependency-manager │ │ │ ├── circular-dependencies.test.js │ │ │ ├── cross-tag-dependencies.test.js │ │ │ └── fix-dependencies-command.test.js │ │ ├── task-manager │ │ │ ├── add-subtask.test.js │ │ │ ├── add-task.test.js │ │ │ ├── analyze-task-complexity.test.js │ │ │ ├── clear-subtasks.test.js │ │ │ ├── complexity-report-tag-isolation.test.js │ │ │ ├── expand-all-tasks.test.js │ │ │ ├── expand-task.test.js │ │ │ ├── find-next-task.test.js │ │ │ ├── generate-task-files.test.js │ │ │ ├── list-tasks.test.js │ │ │ ├── move-task-cross-tag.test.js │ │ │ ├── move-task.test.js │ │ │ ├── parse-prd.test.js │ │ │ ├── remove-subtask.test.js │ │ │ ├── remove-task.test.js │ │ │ ├── research.test.js │ │ │ ├── scope-adjustment.test.js │ │ │ ├── set-task-status.test.js │ │ │ ├── setup.js │ │ │ ├── update-single-task-status.test.js │ │ │ ├── update-subtask-by-id.test.js │ │ │ ├── update-task-by-id.test.js │ │ │ └── update-tasks.test.js │ │ ├── ui │ │ │ └── cross-tag-error-display.test.js │ │ └── utils-tag-aware-paths.test.js │ ├── task-finder.test.js │ ├── task-manager │ │ ├── clear-subtasks.test.js │ │ ├── move-task.test.js │ │ ├── tag-boundary.test.js │ │ └── tag-management.test.js │ ├── task-master.test.js │ ├── ui │ │ └── indicators.test.js │ ├── ui.test.js │ ├── utils-strip-ansi.test.js │ └── utils.test.js ├── tsconfig.json ├── tsdown.config.ts └── turbo.json ``` # Files -------------------------------------------------------------------------------- /context/mcp-protocol-repo.txt: -------------------------------------------------------------------------------- ``` 1 | # Example Clients 2 | Source: https://modelcontextprotocol.io/clients 3 | 4 | A list of applications that support MCP integrations 5 | 6 | This page provides an overview of applications that support the Model Context Protocol (MCP). Each client may support different MCP features, allowing for varying levels of integration with MCP servers. 7 | 8 | ## Feature support matrix 9 | 10 | | Client | [Resources] | [Prompts] | [Tools] | [Sampling] | Roots | Notes | 11 | | ------------------------------------ | ----------- | --------- | ------- | ---------- | ----- | ------------------------------------------------------------------ | 12 | | [Claude Desktop App][Claude] | ✅ | ✅ | ✅ | ❌ | ❌ | Full support for all MCP features | 13 | | [5ire][5ire] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. | 14 | | [BeeAI Framework][BeeAI Framework] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in agentic workflows. | 15 | | [Cline][Cline] | ✅ | ❌ | ✅ | ❌ | ❌ | Supports tools and resources. | 16 | | [Continue][Continue] | ✅ | ✅ | ✅ | ❌ | ❌ | Full support for all MCP features | 17 | | [Cursor][Cursor] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. | 18 | | [Emacs Mcp][Mcp.el] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in Emacs. | 19 | | [Firebase Genkit][Genkit] | ⚠️ | ✅ | ✅ | ❌ | ❌ | Supports resource list and lookup through tools. | 20 | | [GenAIScript][GenAIScript] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. | 21 | | [Goose][Goose] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. | 22 | | [LibreChat][LibreChat] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Agents | 23 | | [mcp-agent][mcp-agent] | ❌ | ❌ | ✅ | ⚠️ | ❌ | Supports tools, server connection management, and agent workflows. | 24 | | [Roo Code][Roo Code] | ✅ | ❌ | ✅ | ❌ | ❌ | Supports tools and resources. | 25 | | [Sourcegraph Cody][Cody] | ✅ | ❌ | ❌ | ❌ | ❌ | Supports resources through OpenCTX | 26 | | [Superinterface][Superinterface] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools | 27 | | [TheiaAI/TheiaIDE][TheiaAI/TheiaIDE] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Agents in Theia AI and the AI-powered Theia IDE | 28 | | [Windsurf Editor][Windsurf] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools with AI Flow for collaborative development. | 29 | | [Zed][Zed] | ❌ | ✅ | ❌ | ❌ | ❌ | Prompts appear as slash commands | 30 | | [SpinAI][SpinAI] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Typescript AI Agents | 31 | | [OpenSumi][OpenSumi] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in OpenSumi | 32 | | [Daydreams Agents][Daydreams] | ✅ | ✅ | ✅ | ❌ | ❌ | Support for drop in Servers to Daydreams agents | 33 | 34 | [Claude]: https://claude.ai/download 35 | 36 | [Cursor]: https://cursor.com 37 | 38 | [Zed]: https://zed.dev 39 | 40 | [Cody]: https://sourcegraph.com/cody 41 | 42 | [Genkit]: https://github.com/firebase/genkit 43 | 44 | [Continue]: https://github.com/continuedev/continue 45 | 46 | [GenAIScript]: https://microsoft.github.io/genaiscript/reference/scripts/mcp-tools/ 47 | 48 | [Cline]: https://github.com/cline/cline 49 | 50 | [LibreChat]: https://github.com/danny-avila/LibreChat 51 | 52 | [TheiaAI/TheiaIDE]: https://eclipsesource.com/blogs/2024/12/19/theia-ide-and-theia-ai-support-mcp/ 53 | 54 | [Superinterface]: https://superinterface.ai 55 | 56 | [5ire]: https://github.com/nanbingxyz/5ire 57 | 58 | [BeeAI Framework]: https://i-am-bee.github.io/beeai-framework 59 | 60 | [mcp-agent]: https://github.com/lastmile-ai/mcp-agent 61 | 62 | [Mcp.el]: https://github.com/lizqwerscott/mcp.el 63 | 64 | [Roo Code]: https://roocode.com 65 | 66 | [Goose]: https://block.github.io/goose/docs/goose-architecture/#interoperability-with-extensions 67 | 68 | [Windsurf]: https://codeium.com/windsurf 69 | 70 | [Daydreams]: https://github.com/daydreamsai/daydreams 71 | 72 | [SpinAI]: https://spinai.dev 73 | 74 | [OpenSumi]: https://github.com/opensumi/core 75 | 76 | [Resources]: https://modelcontextprotocol.io/docs/concepts/resources 77 | 78 | [Prompts]: https://modelcontextprotocol.io/docs/concepts/prompts 79 | 80 | [Tools]: https://modelcontextprotocol.io/docs/concepts/tools 81 | 82 | [Sampling]: https://modelcontextprotocol.io/docs/concepts/sampling 83 | 84 | ## Client details 85 | 86 | ### Claude Desktop App 87 | 88 | The Claude desktop application provides comprehensive support for MCP, enabling deep integration with local tools and data sources. 89 | 90 | **Key features:** 91 | 92 | * Full support for resources, allowing attachment of local files and data 93 | * Support for prompt templates 94 | * Tool integration for executing commands and scripts 95 | * Local server connections for enhanced privacy and security 96 | 97 | > ⓘ Note: The Claude.ai web application does not currently support MCP. MCP features are only available in the desktop application. 98 | 99 | ### 5ire 100 | 101 | [5ire](https://github.com/nanbingxyz/5ire) is an open source cross-platform desktop AI assistant that supports tools through MCP servers. 102 | 103 | **Key features:** 104 | 105 | * Built-in MCP servers can be quickly enabled and disabled. 106 | * Users can add more servers by modifying the configuration file. 107 | * It is open-source and user-friendly, suitable for beginners. 108 | * Future support for MCP will be continuously improved. 109 | 110 | ### BeeAI Framework 111 | 112 | [BeeAI Framework](https://i-am-bee.github.io/beeai-framework) is an open-source framework for building, deploying, and serving powerful agentic workflows at scale. The framework includes the **MCP Tool**, a native feature that simplifies the integration of MCP servers into agentic workflows. 113 | 114 | **Key features:** 115 | 116 | * Seamlessly incorporate MCP tools into agentic workflows. 117 | * Quickly instantiate framework-native tools from connected MCP client(s). 118 | * Planned future support for agentic MCP capabilities. 119 | 120 | **Learn more:** 121 | 122 | * [Example of using MCP tools in agentic workflow](https://i-am-bee.github.io/beeai-framework/#/typescript/tools?id=using-the-mcptool-class) 123 | 124 | ### Cline 125 | 126 | [Cline](https://github.com/cline/cline) is an autonomous coding agent in VS Code that edits files, runs commands, uses a browser, and more–with your permission at each step. 127 | 128 | **Key features:** 129 | 130 | * Create and add tools through natural language (e.g. "add a tool that searches the web") 131 | * Share custom MCP servers Cline creates with others via the `~/Documents/Cline/MCP` directory 132 | * Displays configured MCP servers along with their tools, resources, and any error logs 133 | 134 | ### Continue 135 | 136 | [Continue](https://github.com/continuedev/continue) is an open-source AI code assistant, with built-in support for all MCP features. 137 | 138 | **Key features** 139 | 140 | * Type "@" to mention MCP resources 141 | * Prompt templates surface as slash commands 142 | * Use both built-in and MCP tools directly in chat 143 | * Supports VS Code and JetBrains IDEs, with any LLM 144 | 145 | ### Cursor 146 | 147 | [Cursor](https://docs.cursor.com/advanced/model-context-protocol) is an AI code editor. 148 | 149 | **Key Features**: 150 | 151 | * Support for MCP tools in Cursor Composer 152 | * Support for both STDIO and SSE 153 | 154 | ### Emacs Mcp 155 | 156 | [Emacs Mcp](https://github.com/lizqwerscott/mcp.el) is an Emacs client designed to interface with MCP servers, enabling seamless connections and interactions. It provides MCP tool invocation support for AI plugins like [gptel](https://github.com/karthink/gptel) and [llm](https://github.com/ahyatt/llm), adhering to Emacs' standard tool invocation format. This integration enhances the functionality of AI tools within the Emacs ecosystem. 157 | 158 | **Key features:** 159 | 160 | * Provides MCP tool support for Emacs. 161 | 162 | ### Firebase Genkit 163 | 164 | [Genkit](https://github.com/firebase/genkit) is Firebase's SDK for building and integrating GenAI features into applications. The [genkitx-mcp](https://github.com/firebase/genkit/tree/main/js/plugins/mcp) plugin enables consuming MCP servers as a client or creating MCP servers from Genkit tools and prompts. 165 | 166 | **Key features:** 167 | 168 | * Client support for tools and prompts (resources partially supported) 169 | * Rich discovery with support in Genkit's Dev UI playground 170 | * Seamless interoperability with Genkit's existing tools and prompts 171 | * Works across a wide variety of GenAI models from top providers 172 | 173 | ### GenAIScript 174 | 175 | Programmatically assemble prompts for LLMs using [GenAIScript](https://microsoft.github.io/genaiscript/) (in JavaScript). Orchestrate LLMs, tools, and data in JavaScript. 176 | 177 | **Key features:** 178 | 179 | * JavaScript toolbox to work with prompts 180 | * Abstraction to make it easy and productive 181 | * Seamless Visual Studio Code integration 182 | 183 | ### Goose 184 | 185 | [Goose](https://github.com/block/goose) is an open source AI agent that supercharges your software development by automating coding tasks. 186 | 187 | **Key features:** 188 | 189 | * Expose MCP functionality to Goose through tools. 190 | * MCPs can be installed directly via the [extensions directory](https://block.github.io/goose/v1/extensions/), CLI, or UI. 191 | * Goose allows you to extend its functionality by [building your own MCP servers](https://block.github.io/goose/docs/tutorials/custom-extensions). 192 | * Includes built-in tools for development, web scraping, automation, memory, and integrations with JetBrains and Google Drive. 193 | 194 | ### LibreChat 195 | 196 | [LibreChat](https://github.com/danny-avila/LibreChat) is an open-source, customizable AI chat UI that supports multiple AI providers, now including MCP integration. 197 | 198 | **Key features:** 199 | 200 | * Extend current tool ecosystem, including [Code Interpreter](https://www.librechat.ai/docs/features/code_interpreter) and Image generation tools, through MCP servers 201 | * Add tools to customizable [Agents](https://www.librechat.ai/docs/features/agents), using a variety of LLMs from top providers 202 | * Open-source and self-hostable, with secure multi-user support 203 | * Future roadmap includes expanded MCP feature support 204 | 205 | ### mcp-agent 206 | 207 | [mcp-agent] is a simple, composable framework to build agents using Model Context Protocol. 208 | 209 | **Key features:** 210 | 211 | * Automatic connection management of MCP servers. 212 | * Expose tools from multiple servers to an LLM. 213 | * Implements every pattern defined in [Building Effective Agents](https://www.anthropic.com/research/building-effective-agents). 214 | * Supports workflow pause/resume signals, such as waiting for human feedback. 215 | 216 | ### Roo Code 217 | 218 | [Roo Code](https://roocode.com) enables AI coding assistance via MCP. 219 | 220 | **Key features:** 221 | 222 | * Support for MCP tools and resources 223 | * Integration with development workflows 224 | * Extensible AI capabilities 225 | 226 | ### Sourcegraph Cody 227 | 228 | [Cody](https://openctx.org/docs/providers/modelcontextprotocol) is Sourcegraph's AI coding assistant, which implements MCP through OpenCTX. 229 | 230 | **Key features:** 231 | 232 | * Support for MCP resources 233 | * Integration with Sourcegraph's code intelligence 234 | * Uses OpenCTX as an abstraction layer 235 | * Future support planned for additional MCP features 236 | 237 | ### SpinAI 238 | 239 | [SpinAI](https://spinai.dev) is an open-source TypeScript framework for building observable AI agents. The framework provides native MCP compatibility, allowing agents to seamlessly integrate with MCP servers and tools. 240 | 241 | **Key features:** 242 | 243 | * Built-in MCP compatibility for AI agents 244 | * Open-source TypeScript framework 245 | * Observable agent architecture 246 | * Native support for MCP tools integration 247 | 248 | ### Superinterface 249 | 250 | [Superinterface](https://superinterface.ai) is AI infrastructure and a developer platform to build in-app AI assistants with support for MCP, interactive components, client-side function calling and more. 251 | 252 | **Key features:** 253 | 254 | * Use tools from MCP servers in assistants embedded via React components or script tags 255 | * SSE transport support 256 | * Use any AI model from any AI provider (OpenAI, Anthropic, Ollama, others) 257 | 258 | ### TheiaAI/TheiaIDE 259 | 260 | [Theia AI](https://eclipsesource.com/blogs/2024/10/07/introducing-theia-ai/) is a framework for building AI-enhanced tools and IDEs. The [AI-powered Theia IDE](https://eclipsesource.com/blogs/2024/10/08/introducting-ai-theia-ide/) is an open and flexible development environment built on Theia AI. 261 | 262 | **Key features:** 263 | 264 | * **Tool Integration**: Theia AI enables AI agents, including those in the Theia IDE, to utilize MCP servers for seamless tool interaction. 265 | * **Customizable Prompts**: The Theia IDE allows users to define and adapt prompts, dynamically integrating MCP servers for tailored workflows. 266 | * **Custom agents**: The Theia IDE supports creating custom agents that leverage MCP capabilities, enabling users to design dedicated workflows on the fly. 267 | 268 | Theia AI and Theia IDE's MCP integration provide users with flexibility, making them powerful platforms for exploring and adapting MCP. 269 | 270 | **Learn more:** 271 | 272 | * [Theia IDE and Theia AI MCP Announcement](https://eclipsesource.com/blogs/2024/12/19/theia-ide-and-theia-ai-support-mcp/) 273 | * [Download the AI-powered Theia IDE](https://theia-ide.org/) 274 | 275 | ### Windsurf Editor 276 | 277 | [Windsurf Editor](https://codeium.com/windsurf) is an agentic IDE that combines AI assistance with developer workflows. It features an innovative AI Flow system that enables both collaborative and independent AI interactions while maintaining developer control. 278 | 279 | **Key features:** 280 | 281 | * Revolutionary AI Flow paradigm for human-AI collaboration 282 | * Intelligent code generation and understanding 283 | * Rich development tools with multi-model support 284 | 285 | ### Zed 286 | 287 | [Zed](https://zed.dev/docs/assistant/model-context-protocol) is a high-performance code editor with built-in MCP support, focusing on prompt templates and tool integration. 288 | 289 | **Key features:** 290 | 291 | * Prompt templates surface as slash commands in the editor 292 | * Tool integration for enhanced coding workflows 293 | * Tight integration with editor features and workspace context 294 | * Does not support MCP resources 295 | 296 | ### OpenSumi 297 | 298 | [OpenSumi](https://github.com/opensumi/core) is a framework helps you quickly build AI Native IDE products. 299 | 300 | **Key features:** 301 | 302 | * Supports MCP tools in OpenSumi 303 | * Supports built-in IDE MCP servers and custom MCP servers 304 | 305 | ### Daydreams 306 | 307 | [Daydreams](https://github.com/daydreamsai/daydreams) is a generative agent framework for executing anything onchain 308 | 309 | **Key features:** 310 | 311 | * Supports MCP Servers in config 312 | * Exposes MCP Client 313 | 314 | ## Adding MCP support to your application 315 | 316 | If you've added MCP support to your application, we encourage you to submit a pull request to add it to this list. MCP integration can provide your users with powerful contextual AI capabilities and make your application part of the growing MCP ecosystem. 317 | 318 | Benefits of adding MCP support: 319 | 320 | * Enable users to bring their own context and tools 321 | * Join a growing ecosystem of interoperable AI applications 322 | * Provide users with flexible integration options 323 | * Support local-first AI workflows 324 | 325 | To get started with implementing MCP in your application, check out our [Python](https://github.com/modelcontextprotocol/python-sdk) or [TypeScript SDK Documentation](https://github.com/modelcontextprotocol/typescript-sdk) 326 | 327 | ## Updates and corrections 328 | 329 | This list is maintained by the community. If you notice any inaccuracies or would like to update information about MCP support in your application, please submit a pull request or [open an issue in our documentation repository](https://github.com/modelcontextprotocol/docs/issues). 330 | 331 | 332 | # Contributing 333 | Source: https://modelcontextprotocol.io/development/contributing 334 | 335 | How to participate in Model Context Protocol development 336 | 337 | We welcome contributions from the community! Please review our [contributing guidelines](https://github.com/modelcontextprotocol/.github/blob/main/CONTRIBUTING.md) for details on how to submit changes. 338 | 339 | All contributors must adhere to our [Code of Conduct](https://github.com/modelcontextprotocol/.github/blob/main/CODE_OF_CONDUCT.md). 340 | 341 | For questions and discussions, please use [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions). 342 | 343 | 344 | # Roadmap 345 | Source: https://modelcontextprotocol.io/development/roadmap 346 | 347 | Our plans for evolving Model Context Protocol (H1 2025) 348 | 349 | The Model Context Protocol is rapidly evolving. This page outlines our current thinking on key priorities and future direction for **the first half of 2025**, though these may change significantly as the project develops. 350 | 351 | <Note>The ideas presented here are not commitments—we may solve these challenges differently than described, or some may not materialize at all. This is also not an *exhaustive* list; we may incorporate work that isn't mentioned here.</Note> 352 | 353 | We encourage community participation! Each section links to relevant discussions where you can learn more and contribute your thoughts. 354 | 355 | ## Remote MCP Support 356 | 357 | Our top priority is enabling [remote MCP connections](https://github.com/modelcontextprotocol/specification/discussions/102), allowing clients to securely connect to MCP servers over the internet. Key initiatives include: 358 | 359 | * [**Authentication & Authorization**](https://github.com/modelcontextprotocol/specification/discussions/64): Adding standardized auth capabilities, particularly focused on OAuth 2.0 support. 360 | 361 | * [**Service Discovery**](https://github.com/modelcontextprotocol/specification/discussions/69): Defining how clients can discover and connect to remote MCP servers. 362 | 363 | * [**Stateless Operations**](https://github.com/modelcontextprotocol/specification/discussions/102): Thinking about whether MCP could encompass serverless environments too, where they will need to be mostly stateless. 364 | 365 | ## Reference Implementations 366 | 367 | To help developers build with MCP, we want to offer documentation for: 368 | 369 | * **Client Examples**: Comprehensive reference client implementation(s), demonstrating all protocol features 370 | * **Protocol Drafting**: Streamlined process for proposing and incorporating new protocol features 371 | 372 | ## Distribution & Discovery 373 | 374 | Looking ahead, we're exploring ways to make MCP servers more accessible. Some areas we may investigate include: 375 | 376 | * **Package Management**: Standardized packaging format for MCP servers 377 | * **Installation Tools**: Simplified server installation across MCP clients 378 | * **Sandboxing**: Improved security through server isolation 379 | * **Server Registry**: A common directory for discovering available MCP servers 380 | 381 | ## Agent Support 382 | 383 | We're expanding MCP's capabilities for [complex agentic workflows](https://github.com/modelcontextprotocol/specification/discussions/111), particularly focusing on: 384 | 385 | * [**Hierarchical Agent Systems**](https://github.com/modelcontextprotocol/specification/discussions/94): Improved support for trees of agents through namespacing and topology awareness. 386 | 387 | * [**Interactive Workflows**](https://github.com/modelcontextprotocol/specification/issues/97): Better handling of user permissions and information requests across agent hierarchies, and ways to send output to users instead of models. 388 | 389 | * [**Streaming Results**](https://github.com/modelcontextprotocol/specification/issues/117): Real-time updates from long-running agent operations. 390 | 391 | ## Broader Ecosystem 392 | 393 | We're also invested in: 394 | 395 | * **Community-Led Standards Development**: Fostering a collaborative ecosystem where all AI providers can help shape MCP as an open standard through equal participation and shared governance, ensuring it meets the needs of diverse AI applications and use cases. 396 | * [**Additional Modalities**](https://github.com/modelcontextprotocol/specification/discussions/88): Expanding beyond text to support audio, video, and other formats. 397 | * \[**Standardization**] Considering standardization through a standardization body. 398 | 399 | ## Get Involved 400 | 401 | We welcome community participation in shaping MCP's future. Visit our [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions) to join the conversation and contribute your ideas. 402 | 403 | 404 | # What's New 405 | Source: https://modelcontextprotocol.io/development/updates 406 | 407 | The latest updates and improvements to MCP 408 | 409 | <Update label="2025-02-14" description="Java SDK released"> 410 | * We're excited to announce that the Java SDK developed by Spring AI at VMware Tanzu is now 411 | the official [Java SDK](https://github.com/modelcontextprotocol/java-sdk) for MCP. 412 | This joins our existing Kotlin SDK in our growing list of supported languages. 413 | The Spring AI team will maintain the SDK as an integral part of the Model Context Protocol 414 | organization. We're thrilled to welcome them to the MCP community! 415 | </Update> 416 | 417 | <Update label="2025-01-27" description="Python SDK 1.2.1"> 418 | * Version [1.2.1](https://github.com/modelcontextprotocol/python-sdk/releases/tag/v1.2.1) of the MCP Python SDK has been released, 419 | delivering important stability improvements and bug fixes. 420 | </Update> 421 | 422 | <Update label="2025-01-18" description="SDK and Server Improvements"> 423 | * Simplified, express-like API in the [TypeScript SDK](https://github.com/modelcontextprotocol/typescript-sdk) 424 | * Added 8 new clients to the [clients page](https://modelcontextprotocol.io/clients) 425 | </Update> 426 | 427 | <Update label="2025-01-03" description="SDK and Server Improvements"> 428 | * FastMCP API in the [Python SDK](https://github.com/modelcontextprotocol/python-sdk) 429 | * Dockerized MCP servers in the [servers repo](https://github.com/modelcontextprotocol/servers) 430 | </Update> 431 | 432 | <Update label="2024-12-21" description="Kotlin SDK released"> 433 | * Jetbrains released a Kotlin SDK for MCP! 434 | * For a sample MCP Kotlin server, check out [this repository](https://github.com/modelcontextprotocol/kotlin-sdk/tree/main/samples/kotlin-mcp-server) 435 | </Update> 436 | 437 | 438 | # Core architecture 439 | Source: https://modelcontextprotocol.io/docs/concepts/architecture 440 | 441 | Understand how MCP connects clients, servers, and LLMs 442 | 443 | The Model Context Protocol (MCP) is built on a flexible, extensible architecture that enables seamless communication between LLM applications and integrations. This document covers the core architectural components and concepts. 444 | 445 | ## Overview 446 | 447 | MCP follows a client-server architecture where: 448 | 449 | * **Hosts** are LLM applications (like Claude Desktop or IDEs) that initiate connections 450 | * **Clients** maintain 1:1 connections with servers, inside the host application 451 | * **Servers** provide context, tools, and prompts to clients 452 | 453 | ```mermaid 454 | flowchart LR 455 | subgraph "Host" 456 | client1[MCP Client] 457 | client2[MCP Client] 458 | end 459 | subgraph "Server Process" 460 | server1[MCP Server] 461 | end 462 | subgraph "Server Process" 463 | server2[MCP Server] 464 | end 465 | 466 | client1 <-->|Transport Layer| server1 467 | client2 <-->|Transport Layer| server2 468 | ``` 469 | 470 | ## Core components 471 | 472 | ### Protocol layer 473 | 474 | The protocol layer handles message framing, request/response linking, and high-level communication patterns. 475 | 476 | <Tabs> 477 | <Tab title="TypeScript"> 478 | ```typescript 479 | class Protocol<Request, Notification, Result> { 480 | // Handle incoming requests 481 | setRequestHandler<T>(schema: T, handler: (request: T, extra: RequestHandlerExtra) => Promise<Result>): void 482 | 483 | // Handle incoming notifications 484 | setNotificationHandler<T>(schema: T, handler: (notification: T) => Promise<void>): void 485 | 486 | // Send requests and await responses 487 | request<T>(request: Request, schema: T, options?: RequestOptions): Promise<T> 488 | 489 | // Send one-way notifications 490 | notification(notification: Notification): Promise<void> 491 | } 492 | ``` 493 | </Tab> 494 | 495 | <Tab title="Python"> 496 | ```python 497 | class Session(BaseSession[RequestT, NotificationT, ResultT]): 498 | async def send_request( 499 | self, 500 | request: RequestT, 501 | result_type: type[Result] 502 | ) -> Result: 503 | """ 504 | Send request and wait for response. Raises McpError if response contains error. 505 | """ 506 | # Request handling implementation 507 | 508 | async def send_notification( 509 | self, 510 | notification: NotificationT 511 | ) -> None: 512 | """Send one-way notification that doesn't expect response.""" 513 | # Notification handling implementation 514 | 515 | async def _received_request( 516 | self, 517 | responder: RequestResponder[ReceiveRequestT, ResultT] 518 | ) -> None: 519 | """Handle incoming request from other side.""" 520 | # Request handling implementation 521 | 522 | async def _received_notification( 523 | self, 524 | notification: ReceiveNotificationT 525 | ) -> None: 526 | """Handle incoming notification from other side.""" 527 | # Notification handling implementation 528 | ``` 529 | </Tab> 530 | </Tabs> 531 | 532 | Key classes include: 533 | 534 | * `Protocol` 535 | * `Client` 536 | * `Server` 537 | 538 | ### Transport layer 539 | 540 | The transport layer handles the actual communication between clients and servers. MCP supports multiple transport mechanisms: 541 | 542 | 1. **Stdio transport** 543 | * Uses standard input/output for communication 544 | * Ideal for local processes 545 | 546 | 2. **HTTP with SSE transport** 547 | * Uses Server-Sent Events for server-to-client messages 548 | * HTTP POST for client-to-server messages 549 | 550 | All transports use [JSON-RPC](https://www.jsonrpc.org/) 2.0 to exchange messages. See the [specification](https://spec.modelcontextprotocol.io) for detailed information about the Model Context Protocol message format. 551 | 552 | ### Message types 553 | 554 | MCP has these main types of messages: 555 | 556 | 1. **Requests** expect a response from the other side: 557 | ```typescript 558 | interface Request { 559 | method: string; 560 | params?: { ... }; 561 | } 562 | ``` 563 | 564 | 2. **Results** are successful responses to requests: 565 | ```typescript 566 | interface Result { 567 | [key: string]: unknown; 568 | } 569 | ``` 570 | 571 | 3. **Errors** indicate that a request failed: 572 | ```typescript 573 | interface Error { 574 | code: number; 575 | message: string; 576 | data?: unknown; 577 | } 578 | ``` 579 | 580 | 4. **Notifications** are one-way messages that don't expect a response: 581 | ```typescript 582 | interface Notification { 583 | method: string; 584 | params?: { ... }; 585 | } 586 | ``` 587 | 588 | ## Connection lifecycle 589 | 590 | ### 1. Initialization 591 | 592 | ```mermaid 593 | sequenceDiagram 594 | participant Client 595 | participant Server 596 | 597 | Client->>Server: initialize request 598 | Server->>Client: initialize response 599 | Client->>Server: initialized notification 600 | 601 | Note over Client,Server: Connection ready for use 602 | ``` 603 | 604 | 1. Client sends `initialize` request with protocol version and capabilities 605 | 2. Server responds with its protocol version and capabilities 606 | 3. Client sends `initialized` notification as acknowledgment 607 | 4. Normal message exchange begins 608 | 609 | ### 2. Message exchange 610 | 611 | After initialization, the following patterns are supported: 612 | 613 | * **Request-Response**: Client or server sends requests, the other responds 614 | * **Notifications**: Either party sends one-way messages 615 | 616 | ### 3. Termination 617 | 618 | Either party can terminate the connection: 619 | 620 | * Clean shutdown via `close()` 621 | * Transport disconnection 622 | * Error conditions 623 | 624 | ## Error handling 625 | 626 | MCP defines these standard error codes: 627 | 628 | ```typescript 629 | enum ErrorCode { 630 | // Standard JSON-RPC error codes 631 | ParseError = -32700, 632 | InvalidRequest = -32600, 633 | MethodNotFound = -32601, 634 | InvalidParams = -32602, 635 | InternalError = -32603 636 | } 637 | ``` 638 | 639 | SDKs and applications can define their own error codes above -32000. 640 | 641 | Errors are propagated through: 642 | 643 | * Error responses to requests 644 | * Error events on transports 645 | * Protocol-level error handlers 646 | 647 | ## Implementation example 648 | 649 | Here's a basic example of implementing an MCP server: 650 | 651 | <Tabs> 652 | <Tab title="TypeScript"> 653 | ```typescript 654 | import { Server } from "@modelcontextprotocol/sdk/server/index.js"; 655 | import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; 656 | 657 | const server = new Server({ 658 | name: "example-server", 659 | version: "1.0.0" 660 | }, { 661 | capabilities: { 662 | resources: {} 663 | } 664 | }); 665 | 666 | // Handle requests 667 | server.setRequestHandler(ListResourcesRequestSchema, async () => { 668 | return { 669 | resources: [ 670 | { 671 | uri: "example://resource", 672 | name: "Example Resource" 673 | } 674 | ] 675 | }; 676 | }); 677 | 678 | // Connect transport 679 | const transport = new StdioServerTransport(); 680 | await server.connect(transport); 681 | ``` 682 | </Tab> 683 | 684 | <Tab title="Python"> 685 | ```python 686 | import asyncio 687 | import mcp.types as types 688 | from mcp.server import Server 689 | from mcp.server.stdio import stdio_server 690 | 691 | app = Server("example-server") 692 | 693 | @app.list_resources() 694 | async def list_resources() -> list[types.Resource]: 695 | return [ 696 | types.Resource( 697 | uri="example://resource", 698 | name="Example Resource" 699 | ) 700 | ] 701 | 702 | async def main(): 703 | async with stdio_server() as streams: 704 | await app.run( 705 | streams[0], 706 | streams[1], 707 | app.create_initialization_options() 708 | ) 709 | 710 | if __name__ == "__main__": 711 | asyncio.run(main) 712 | ``` 713 | </Tab> 714 | </Tabs> 715 | 716 | ## Best practices 717 | 718 | ### Transport selection 719 | 720 | 1. **Local communication** 721 | * Use stdio transport for local processes 722 | * Efficient for same-machine communication 723 | * Simple process management 724 | 725 | 2. **Remote communication** 726 | * Use SSE for scenarios requiring HTTP compatibility 727 | * Consider security implications including authentication and authorization 728 | 729 | ### Message handling 730 | 731 | 1. **Request processing** 732 | * Validate inputs thoroughly 733 | * Use type-safe schemas 734 | * Handle errors gracefully 735 | * Implement timeouts 736 | 737 | 2. **Progress reporting** 738 | * Use progress tokens for long operations 739 | * Report progress incrementally 740 | * Include total progress when known 741 | 742 | 3. **Error management** 743 | * Use appropriate error codes 744 | * Include helpful error messages 745 | * Clean up resources on errors 746 | 747 | ## Security considerations 748 | 749 | 1. **Transport security** 750 | * Use TLS for remote connections 751 | * Validate connection origins 752 | * Implement authentication when needed 753 | 754 | 2. **Message validation** 755 | * Validate all incoming messages 756 | * Sanitize inputs 757 | * Check message size limits 758 | * Verify JSON-RPC format 759 | 760 | 3. **Resource protection** 761 | * Implement access controls 762 | * Validate resource paths 763 | * Monitor resource usage 764 | * Rate limit requests 765 | 766 | 4. **Error handling** 767 | * Don't leak sensitive information 768 | * Log security-relevant errors 769 | * Implement proper cleanup 770 | * Handle DoS scenarios 771 | 772 | ## Debugging and monitoring 773 | 774 | 1. **Logging** 775 | * Log protocol events 776 | * Track message flow 777 | * Monitor performance 778 | * Record errors 779 | 780 | 2. **Diagnostics** 781 | * Implement health checks 782 | * Monitor connection state 783 | * Track resource usage 784 | * Profile performance 785 | 786 | 3. **Testing** 787 | * Test different transports 788 | * Verify error handling 789 | * Check edge cases 790 | * Load test servers 791 | 792 | 793 | # Prompts 794 | Source: https://modelcontextprotocol.io/docs/concepts/prompts 795 | 796 | Create reusable prompt templates and workflows 797 | 798 | Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions. 799 | 800 | <Note> 801 | Prompts are designed to be **user-controlled**, meaning they are exposed from servers to clients with the intention of the user being able to explicitly select them for use. 802 | </Note> 803 | 804 | ## Overview 805 | 806 | Prompts in MCP are predefined templates that can: 807 | 808 | * Accept dynamic arguments 809 | * Include context from resources 810 | * Chain multiple interactions 811 | * Guide specific workflows 812 | * Surface as UI elements (like slash commands) 813 | 814 | ## Prompt structure 815 | 816 | Each prompt is defined with: 817 | 818 | ```typescript 819 | { 820 | name: string; // Unique identifier for the prompt 821 | description?: string; // Human-readable description 822 | arguments?: [ // Optional list of arguments 823 | { 824 | name: string; // Argument identifier 825 | description?: string; // Argument description 826 | required?: boolean; // Whether argument is required 827 | } 828 | ] 829 | } 830 | ``` 831 | 832 | ## Discovering prompts 833 | 834 | Clients can discover available prompts through the `prompts/list` endpoint: 835 | 836 | ```typescript 837 | // Request 838 | { 839 | method: "prompts/list" 840 | } 841 | 842 | // Response 843 | { 844 | prompts: [ 845 | { 846 | name: "analyze-code", 847 | description: "Analyze code for potential improvements", 848 | arguments: [ 849 | { 850 | name: "language", 851 | description: "Programming language", 852 | required: true 853 | } 854 | ] 855 | } 856 | ] 857 | } 858 | ``` 859 | 860 | ## Using prompts 861 | 862 | To use a prompt, clients make a `prompts/get` request: 863 | 864 | ````typescript 865 | // Request 866 | { 867 | method: "prompts/get", 868 | params: { 869 | name: "analyze-code", 870 | arguments: { 871 | language: "python" 872 | } 873 | } 874 | } 875 | 876 | // Response 877 | { 878 | description: "Analyze Python code for potential improvements", 879 | messages: [ 880 | { 881 | role: "user", 882 | content: { 883 | type: "text", 884 | text: "Please analyze the following Python code for potential improvements:\n\n```python\ndef calculate_sum(numbers):\n total = 0\n for num in numbers:\n total = total + num\n return total\n\nresult = calculate_sum([1, 2, 3, 4, 5])\nprint(result)\n```" 885 | } 886 | } 887 | ] 888 | } 889 | ```` 890 | 891 | ## Dynamic prompts 892 | 893 | Prompts can be dynamic and include: 894 | 895 | ### Embedded resource context 896 | 897 | ```json 898 | { 899 | "name": "analyze-project", 900 | "description": "Analyze project logs and code", 901 | "arguments": [ 902 | { 903 | "name": "timeframe", 904 | "description": "Time period to analyze logs", 905 | "required": true 906 | }, 907 | { 908 | "name": "fileUri", 909 | "description": "URI of code file to review", 910 | "required": true 911 | } 912 | ] 913 | } 914 | ``` 915 | 916 | When handling the `prompts/get` request: 917 | 918 | ```json 919 | { 920 | "messages": [ 921 | { 922 | "role": "user", 923 | "content": { 924 | "type": "text", 925 | "text": "Analyze these system logs and the code file for any issues:" 926 | } 927 | }, 928 | { 929 | "role": "user", 930 | "content": { 931 | "type": "resource", 932 | "resource": { 933 | "uri": "logs://recent?timeframe=1h", 934 | "text": "[2024-03-14 15:32:11] ERROR: Connection timeout in network.py:127\n[2024-03-14 15:32:15] WARN: Retrying connection (attempt 2/3)\n[2024-03-14 15:32:20] ERROR: Max retries exceeded", 935 | "mimeType": "text/plain" 936 | } 937 | } 938 | }, 939 | { 940 | "role": "user", 941 | "content": { 942 | "type": "resource", 943 | "resource": { 944 | "uri": "file:///path/to/code.py", 945 | "text": "def connect_to_service(timeout=30):\n retries = 3\n for attempt in range(retries):\n try:\n return establish_connection(timeout)\n except TimeoutError:\n if attempt == retries - 1:\n raise\n time.sleep(5)\n\ndef establish_connection(timeout):\n # Connection implementation\n pass", 946 | "mimeType": "text/x-python" 947 | } 948 | } 949 | } 950 | ] 951 | } 952 | ``` 953 | 954 | ### Multi-step workflows 955 | 956 | ```typescript 957 | const debugWorkflow = { 958 | name: "debug-error", 959 | async getMessages(error: string) { 960 | return [ 961 | { 962 | role: "user", 963 | content: { 964 | type: "text", 965 | text: `Here's an error I'm seeing: ${error}` 966 | } 967 | }, 968 | { 969 | role: "assistant", 970 | content: { 971 | type: "text", 972 | text: "I'll help analyze this error. What have you tried so far?" 973 | } 974 | }, 975 | { 976 | role: "user", 977 | content: { 978 | type: "text", 979 | text: "I've tried restarting the service, but the error persists." 980 | } 981 | } 982 | ]; 983 | } 984 | }; 985 | ``` 986 | 987 | ## Example implementation 988 | 989 | Here's a complete example of implementing prompts in an MCP server: 990 | 991 | <Tabs> 992 | <Tab title="TypeScript"> 993 | ```typescript 994 | import { Server } from "@modelcontextprotocol/sdk/server"; 995 | import { 996 | ListPromptsRequestSchema, 997 | GetPromptRequestSchema 998 | } from "@modelcontextprotocol/sdk/types"; 999 | 1000 | const PROMPTS = { 1001 | "git-commit": { 1002 | name: "git-commit", 1003 | description: "Generate a Git commit message", 1004 | arguments: [ 1005 | { 1006 | name: "changes", 1007 | description: "Git diff or description of changes", 1008 | required: true 1009 | } 1010 | ] 1011 | }, 1012 | "explain-code": { 1013 | name: "explain-code", 1014 | description: "Explain how code works", 1015 | arguments: [ 1016 | { 1017 | name: "code", 1018 | description: "Code to explain", 1019 | required: true 1020 | }, 1021 | { 1022 | name: "language", 1023 | description: "Programming language", 1024 | required: false 1025 | } 1026 | ] 1027 | } 1028 | }; 1029 | 1030 | const server = new Server({ 1031 | name: "example-prompts-server", 1032 | version: "1.0.0" 1033 | }, { 1034 | capabilities: { 1035 | prompts: {} 1036 | } 1037 | }); 1038 | 1039 | // List available prompts 1040 | server.setRequestHandler(ListPromptsRequestSchema, async () => { 1041 | return { 1042 | prompts: Object.values(PROMPTS) 1043 | }; 1044 | }); 1045 | 1046 | // Get specific prompt 1047 | server.setRequestHandler(GetPromptRequestSchema, async (request) => { 1048 | const prompt = PROMPTS[request.params.name]; 1049 | if (!prompt) { 1050 | throw new Error(`Prompt not found: ${request.params.name}`); 1051 | } 1052 | 1053 | if (request.params.name === "git-commit") { 1054 | return { 1055 | messages: [ 1056 | { 1057 | role: "user", 1058 | content: { 1059 | type: "text", 1060 | text: `Generate a concise but descriptive commit message for these changes:\n\n${request.params.arguments?.changes}` 1061 | } 1062 | } 1063 | ] 1064 | }; 1065 | } 1066 | 1067 | if (request.params.name === "explain-code") { 1068 | const language = request.params.arguments?.language || "Unknown"; 1069 | return { 1070 | messages: [ 1071 | { 1072 | role: "user", 1073 | content: { 1074 | type: "text", 1075 | text: `Explain how this ${language} code works:\n\n${request.params.arguments?.code}` 1076 | } 1077 | } 1078 | ] 1079 | }; 1080 | } 1081 | 1082 | throw new Error("Prompt implementation not found"); 1083 | }); 1084 | ``` 1085 | </Tab> 1086 | 1087 | <Tab title="Python"> 1088 | ```python 1089 | from mcp.server import Server 1090 | import mcp.types as types 1091 | 1092 | # Define available prompts 1093 | PROMPTS = { 1094 | "git-commit": types.Prompt( 1095 | name="git-commit", 1096 | description="Generate a Git commit message", 1097 | arguments=[ 1098 | types.PromptArgument( 1099 | name="changes", 1100 | description="Git diff or description of changes", 1101 | required=True 1102 | ) 1103 | ], 1104 | ), 1105 | "explain-code": types.Prompt( 1106 | name="explain-code", 1107 | description="Explain how code works", 1108 | arguments=[ 1109 | types.PromptArgument( 1110 | name="code", 1111 | description="Code to explain", 1112 | required=True 1113 | ), 1114 | types.PromptArgument( 1115 | name="language", 1116 | description="Programming language", 1117 | required=False 1118 | ) 1119 | ], 1120 | ) 1121 | } 1122 | 1123 | # Initialize server 1124 | app = Server("example-prompts-server") 1125 | 1126 | @app.list_prompts() 1127 | async def list_prompts() -> list[types.Prompt]: 1128 | return list(PROMPTS.values()) 1129 | 1130 | @app.get_prompt() 1131 | async def get_prompt( 1132 | name: str, arguments: dict[str, str] | None = None 1133 | ) -> types.GetPromptResult: 1134 | if name not in PROMPTS: 1135 | raise ValueError(f"Prompt not found: {name}") 1136 | 1137 | if name == "git-commit": 1138 | changes = arguments.get("changes") if arguments else "" 1139 | return types.GetPromptResult( 1140 | messages=[ 1141 | types.PromptMessage( 1142 | role="user", 1143 | content=types.TextContent( 1144 | type="text", 1145 | text=f"Generate a concise but descriptive commit message " 1146 | f"for these changes:\n\n{changes}" 1147 | ) 1148 | ) 1149 | ] 1150 | ) 1151 | 1152 | if name == "explain-code": 1153 | code = arguments.get("code") if arguments else "" 1154 | language = arguments.get("language", "Unknown") if arguments else "Unknown" 1155 | return types.GetPromptResult( 1156 | messages=[ 1157 | types.PromptMessage( 1158 | role="user", 1159 | content=types.TextContent( 1160 | type="text", 1161 | text=f"Explain how this {language} code works:\n\n{code}" 1162 | ) 1163 | ) 1164 | ] 1165 | ) 1166 | 1167 | raise ValueError("Prompt implementation not found") 1168 | ``` 1169 | </Tab> 1170 | </Tabs> 1171 | 1172 | ## Best practices 1173 | 1174 | When implementing prompts: 1175 | 1176 | 1. Use clear, descriptive prompt names 1177 | 2. Provide detailed descriptions for prompts and arguments 1178 | 3. Validate all required arguments 1179 | 4. Handle missing arguments gracefully 1180 | 5. Consider versioning for prompt templates 1181 | 6. Cache dynamic content when appropriate 1182 | 7. Implement error handling 1183 | 8. Document expected argument formats 1184 | 9. Consider prompt composability 1185 | 10. Test prompts with various inputs 1186 | 1187 | ## UI integration 1188 | 1189 | Prompts can be surfaced in client UIs as: 1190 | 1191 | * Slash commands 1192 | * Quick actions 1193 | * Context menu items 1194 | * Command palette entries 1195 | * Guided workflows 1196 | * Interactive forms 1197 | 1198 | ## Updates and changes 1199 | 1200 | Servers can notify clients about prompt changes: 1201 | 1202 | 1. Server capability: `prompts.listChanged` 1203 | 2. Notification: `notifications/prompts/list_changed` 1204 | 3. Client re-fetches prompt list 1205 | 1206 | ## Security considerations 1207 | 1208 | When implementing prompts: 1209 | 1210 | * Validate all arguments 1211 | * Sanitize user input 1212 | * Consider rate limiting 1213 | * Implement access controls 1214 | * Audit prompt usage 1215 | * Handle sensitive data appropriately 1216 | * Validate generated content 1217 | * Implement timeouts 1218 | * Consider prompt injection risks 1219 | * Document security requirements 1220 | 1221 | 1222 | # Resources 1223 | Source: https://modelcontextprotocol.io/docs/concepts/resources 1224 | 1225 | Expose data and content from your servers to LLMs 1226 | 1227 | Resources are a core primitive in the Model Context Protocol (MCP) that allow servers to expose data and content that can be read by clients and used as context for LLM interactions. 1228 | 1229 | <Note> 1230 | Resources are designed to be **application-controlled**, meaning that the client application can decide how and when they should be used. 1231 | Different MCP clients may handle resources differently. For example: 1232 | 1233 | * Claude Desktop currently requires users to explicitly select resources before they can be used 1234 | * Other clients might automatically select resources based on heuristics 1235 | * Some implementations may even allow the AI model itself to determine which resources to use 1236 | 1237 | Server authors should be prepared to handle any of these interaction patterns when implementing resource support. In order to expose data to models automatically, server authors should use a **model-controlled** primitive such as [Tools](./tools). 1238 | </Note> 1239 | 1240 | ## Overview 1241 | 1242 | Resources represent any kind of data that an MCP server wants to make available to clients. This can include: 1243 | 1244 | * File contents 1245 | * Database records 1246 | * API responses 1247 | * Live system data 1248 | * Screenshots and images 1249 | * Log files 1250 | * And more 1251 | 1252 | Each resource is identified by a unique URI and can contain either text or binary data. 1253 | 1254 | ## Resource URIs 1255 | 1256 | Resources are identified using URIs that follow this format: 1257 | 1258 | ``` 1259 | [protocol]://[host]/[path] 1260 | ``` 1261 | 1262 | For example: 1263 | 1264 | * `file:///home/user/documents/report.pdf` 1265 | * `postgres://database/customers/schema` 1266 | * `screen://localhost/display1` 1267 | 1268 | The protocol and path structure is defined by the MCP server implementation. Servers can define their own custom URI schemes. 1269 | 1270 | ## Resource types 1271 | 1272 | Resources can contain two types of content: 1273 | 1274 | ### Text resources 1275 | 1276 | Text resources contain UTF-8 encoded text data. These are suitable for: 1277 | 1278 | * Source code 1279 | * Configuration files 1280 | * Log files 1281 | * JSON/XML data 1282 | * Plain text 1283 | 1284 | ### Binary resources 1285 | 1286 | Binary resources contain raw binary data encoded in base64. These are suitable for: 1287 | 1288 | * Images 1289 | * PDFs 1290 | * Audio files 1291 | * Video files 1292 | * Other non-text formats 1293 | 1294 | ## Resource discovery 1295 | 1296 | Clients can discover available resources through two main methods: 1297 | 1298 | ### Direct resources 1299 | 1300 | Servers expose a list of concrete resources via the `resources/list` endpoint. Each resource includes: 1301 | 1302 | ```typescript 1303 | { 1304 | uri: string; // Unique identifier for the resource 1305 | name: string; // Human-readable name 1306 | description?: string; // Optional description 1307 | mimeType?: string; // Optional MIME type 1308 | } 1309 | ``` 1310 | 1311 | ### Resource templates 1312 | 1313 | For dynamic resources, servers can expose [URI templates](https://datatracker.ietf.org/doc/html/rfc6570) that clients can use to construct valid resource URIs: 1314 | 1315 | ```typescript 1316 | { 1317 | uriTemplate: string; // URI template following RFC 6570 1318 | name: string; // Human-readable name for this type 1319 | description?: string; // Optional description 1320 | mimeType?: string; // Optional MIME type for all matching resources 1321 | } 1322 | ``` 1323 | 1324 | ## Reading resources 1325 | 1326 | To read a resource, clients make a `resources/read` request with the resource URI. 1327 | 1328 | The server responds with a list of resource contents: 1329 | 1330 | ```typescript 1331 | { 1332 | contents: [ 1333 | { 1334 | uri: string; // The URI of the resource 1335 | mimeType?: string; // Optional MIME type 1336 | 1337 | // One of: 1338 | text?: string; // For text resources 1339 | blob?: string; // For binary resources (base64 encoded) 1340 | } 1341 | ] 1342 | } 1343 | ``` 1344 | 1345 | <Tip> 1346 | Servers may return multiple resources in response to one `resources/read` request. This could be used, for example, to return a list of files inside a directory when the directory is read. 1347 | </Tip> 1348 | 1349 | ## Resource updates 1350 | 1351 | MCP supports real-time updates for resources through two mechanisms: 1352 | 1353 | ### List changes 1354 | 1355 | Servers can notify clients when their list of available resources changes via the `notifications/resources/list_changed` notification. 1356 | 1357 | ### Content changes 1358 | 1359 | Clients can subscribe to updates for specific resources: 1360 | 1361 | 1. Client sends `resources/subscribe` with resource URI 1362 | 2. Server sends `notifications/resources/updated` when the resource changes 1363 | 3. Client can fetch latest content with `resources/read` 1364 | 4. Client can unsubscribe with `resources/unsubscribe` 1365 | 1366 | ## Example implementation 1367 | 1368 | Here's a simple example of implementing resource support in an MCP server: 1369 | 1370 | <Tabs> 1371 | <Tab title="TypeScript"> 1372 | ```typescript 1373 | const server = new Server({ 1374 | name: "example-server", 1375 | version: "1.0.0" 1376 | }, { 1377 | capabilities: { 1378 | resources: {} 1379 | } 1380 | }); 1381 | 1382 | // List available resources 1383 | server.setRequestHandler(ListResourcesRequestSchema, async () => { 1384 | return { 1385 | resources: [ 1386 | { 1387 | uri: "file:///logs/app.log", 1388 | name: "Application Logs", 1389 | mimeType: "text/plain" 1390 | } 1391 | ] 1392 | }; 1393 | }); 1394 | 1395 | // Read resource contents 1396 | server.setRequestHandler(ReadResourceRequestSchema, async (request) => { 1397 | const uri = request.params.uri; 1398 | 1399 | if (uri === "file:///logs/app.log") { 1400 | const logContents = await readLogFile(); 1401 | return { 1402 | contents: [ 1403 | { 1404 | uri, 1405 | mimeType: "text/plain", 1406 | text: logContents 1407 | } 1408 | ] 1409 | }; 1410 | } 1411 | 1412 | throw new Error("Resource not found"); 1413 | }); 1414 | ``` 1415 | </Tab> 1416 | 1417 | <Tab title="Python"> 1418 | ```python 1419 | app = Server("example-server") 1420 | 1421 | @app.list_resources() 1422 | async def list_resources() -> list[types.Resource]: 1423 | return [ 1424 | types.Resource( 1425 | uri="file:///logs/app.log", 1426 | name="Application Logs", 1427 | mimeType="text/plain" 1428 | ) 1429 | ] 1430 | 1431 | @app.read_resource() 1432 | async def read_resource(uri: AnyUrl) -> str: 1433 | if str(uri) == "file:///logs/app.log": 1434 | log_contents = await read_log_file() 1435 | return log_contents 1436 | 1437 | raise ValueError("Resource not found") 1438 | 1439 | # Start server 1440 | async with stdio_server() as streams: 1441 | await app.run( 1442 | streams[0], 1443 | streams[1], 1444 | app.create_initialization_options() 1445 | ) 1446 | ``` 1447 | </Tab> 1448 | </Tabs> 1449 | 1450 | ## Best practices 1451 | 1452 | When implementing resource support: 1453 | 1454 | 1. Use clear, descriptive resource names and URIs 1455 | 2. Include helpful descriptions to guide LLM understanding 1456 | 3. Set appropriate MIME types when known 1457 | 4. Implement resource templates for dynamic content 1458 | 5. Use subscriptions for frequently changing resources 1459 | 6. Handle errors gracefully with clear error messages 1460 | 7. Consider pagination for large resource lists 1461 | 8. Cache resource contents when appropriate 1462 | 9. Validate URIs before processing 1463 | 10. Document your custom URI schemes 1464 | 1465 | ## Security considerations 1466 | 1467 | When exposing resources: 1468 | 1469 | * Validate all resource URIs 1470 | * Implement appropriate access controls 1471 | * Sanitize file paths to prevent directory traversal 1472 | * Be cautious with binary data handling 1473 | * Consider rate limiting for resource reads 1474 | * Audit resource access 1475 | * Encrypt sensitive data in transit 1476 | * Validate MIME types 1477 | * Implement timeouts for long-running reads 1478 | * Handle resource cleanup appropriately 1479 | 1480 | 1481 | # Roots 1482 | Source: https://modelcontextprotocol.io/docs/concepts/roots 1483 | 1484 | Understanding roots in MCP 1485 | 1486 | Roots are a concept in MCP that define the boundaries where servers can operate. They provide a way for clients to inform servers about relevant resources and their locations. 1487 | 1488 | ## What are Roots? 1489 | 1490 | A root is a URI that a client suggests a server should focus on. When a client connects to a server, it declares which roots the server should work with. While primarily used for filesystem paths, roots can be any valid URI including HTTP URLs. 1491 | 1492 | For example, roots could be: 1493 | 1494 | ``` 1495 | file:///home/user/projects/myapp 1496 | https://api.example.com/v1 1497 | ``` 1498 | 1499 | ## Why Use Roots? 1500 | 1501 | Roots serve several important purposes: 1502 | 1503 | 1. **Guidance**: They inform servers about relevant resources and locations 1504 | 2. **Clarity**: Roots make it clear which resources are part of your workspace 1505 | 3. **Organization**: Multiple roots let you work with different resources simultaneously 1506 | 1507 | ## How Roots Work 1508 | 1509 | When a client supports roots, it: 1510 | 1511 | 1. Declares the `roots` capability during connection 1512 | 2. Provides a list of suggested roots to the server 1513 | 3. Notifies the server when roots change (if supported) 1514 | 1515 | While roots are informational and not strictly enforcing, servers should: 1516 | 1517 | 1. Respect the provided roots 1518 | 2. Use root URIs to locate and access resources 1519 | 3. Prioritize operations within root boundaries 1520 | 1521 | ## Common Use Cases 1522 | 1523 | Roots are commonly used to define: 1524 | 1525 | * Project directories 1526 | * Repository locations 1527 | * API endpoints 1528 | * Configuration locations 1529 | * Resource boundaries 1530 | 1531 | ## Best Practices 1532 | 1533 | When working with roots: 1534 | 1535 | 1. Only suggest necessary resources 1536 | 2. Use clear, descriptive names for roots 1537 | 3. Monitor root accessibility 1538 | 4. Handle root changes gracefully 1539 | 1540 | ## Example 1541 | 1542 | Here's how a typical MCP client might expose roots: 1543 | 1544 | ```json 1545 | { 1546 | "roots": [ 1547 | { 1548 | "uri": "file:///home/user/projects/frontend", 1549 | "name": "Frontend Repository" 1550 | }, 1551 | { 1552 | "uri": "https://api.example.com/v1", 1553 | "name": "API Endpoint" 1554 | } 1555 | ] 1556 | } 1557 | ``` 1558 | 1559 | This configuration suggests the server focus on both a local repository and an API endpoint while keeping them logically separated. 1560 | 1561 | 1562 | # Sampling 1563 | Source: https://modelcontextprotocol.io/docs/concepts/sampling 1564 | 1565 | Let your servers request completions from LLMs 1566 | 1567 | Sampling is a powerful MCP feature that allows servers to request LLM completions through the client, enabling sophisticated agentic behaviors while maintaining security and privacy. 1568 | 1569 | <Info> 1570 | This feature of MCP is not yet supported in the Claude Desktop client. 1571 | </Info> 1572 | 1573 | ## How sampling works 1574 | 1575 | The sampling flow follows these steps: 1576 | 1577 | 1. Server sends a `sampling/createMessage` request to the client 1578 | 2. Client reviews the request and can modify it 1579 | 3. Client samples from an LLM 1580 | 4. Client reviews the completion 1581 | 5. Client returns the result to the server 1582 | 1583 | This human-in-the-loop design ensures users maintain control over what the LLM sees and generates. 1584 | 1585 | ## Message format 1586 | 1587 | Sampling requests use a standardized message format: 1588 | 1589 | ```typescript 1590 | { 1591 | messages: [ 1592 | { 1593 | role: "user" | "assistant", 1594 | content: { 1595 | type: "text" | "image", 1596 | 1597 | // For text: 1598 | text?: string, 1599 | 1600 | // For images: 1601 | data?: string, // base64 encoded 1602 | mimeType?: string 1603 | } 1604 | } 1605 | ], 1606 | modelPreferences?: { 1607 | hints?: [{ 1608 | name?: string // Suggested model name/family 1609 | }], 1610 | costPriority?: number, // 0-1, importance of minimizing cost 1611 | speedPriority?: number, // 0-1, importance of low latency 1612 | intelligencePriority?: number // 0-1, importance of capabilities 1613 | }, 1614 | systemPrompt?: string, 1615 | includeContext?: "none" | "thisServer" | "allServers", 1616 | temperature?: number, 1617 | maxTokens: number, 1618 | stopSequences?: string[], 1619 | metadata?: Record<string, unknown> 1620 | } 1621 | ``` 1622 | 1623 | ## Request parameters 1624 | 1625 | ### Messages 1626 | 1627 | The `messages` array contains the conversation history to send to the LLM. Each message has: 1628 | 1629 | * `role`: Either "user" or "assistant" 1630 | * `content`: The message content, which can be: 1631 | * Text content with a `text` field 1632 | * Image content with `data` (base64) and `mimeType` fields 1633 | 1634 | ### Model preferences 1635 | 1636 | The `modelPreferences` object allows servers to specify their model selection preferences: 1637 | 1638 | * `hints`: Array of model name suggestions that clients can use to select an appropriate model: 1639 | * `name`: String that can match full or partial model names (e.g. "claude-3", "sonnet") 1640 | * Clients may map hints to equivalent models from different providers 1641 | * Multiple hints are evaluated in preference order 1642 | 1643 | * Priority values (0-1 normalized): 1644 | * `costPriority`: Importance of minimizing costs 1645 | * `speedPriority`: Importance of low latency response 1646 | * `intelligencePriority`: Importance of advanced model capabilities 1647 | 1648 | Clients make the final model selection based on these preferences and their available models. 1649 | 1650 | ### System prompt 1651 | 1652 | An optional `systemPrompt` field allows servers to request a specific system prompt. The client may modify or ignore this. 1653 | 1654 | ### Context inclusion 1655 | 1656 | The `includeContext` parameter specifies what MCP context to include: 1657 | 1658 | * `"none"`: No additional context 1659 | * `"thisServer"`: Include context from the requesting server 1660 | * `"allServers"`: Include context from all connected MCP servers 1661 | 1662 | The client controls what context is actually included. 1663 | 1664 | ### Sampling parameters 1665 | 1666 | Fine-tune the LLM sampling with: 1667 | 1668 | * `temperature`: Controls randomness (0.0 to 1.0) 1669 | * `maxTokens`: Maximum tokens to generate 1670 | * `stopSequences`: Array of sequences that stop generation 1671 | * `metadata`: Additional provider-specific parameters 1672 | 1673 | ## Response format 1674 | 1675 | The client returns a completion result: 1676 | 1677 | ```typescript 1678 | { 1679 | model: string, // Name of the model used 1680 | stopReason?: "endTurn" | "stopSequence" | "maxTokens" | string, 1681 | role: "user" | "assistant", 1682 | content: { 1683 | type: "text" | "image", 1684 | text?: string, 1685 | data?: string, 1686 | mimeType?: string 1687 | } 1688 | } 1689 | ``` 1690 | 1691 | ## Example request 1692 | 1693 | Here's an example of requesting sampling from a client: 1694 | 1695 | ```json 1696 | { 1697 | "method": "sampling/createMessage", 1698 | "params": { 1699 | "messages": [ 1700 | { 1701 | "role": "user", 1702 | "content": { 1703 | "type": "text", 1704 | "text": "What files are in the current directory?" 1705 | } 1706 | } 1707 | ], 1708 | "systemPrompt": "You are a helpful file system assistant.", 1709 | "includeContext": "thisServer", 1710 | "maxTokens": 100 1711 | } 1712 | } 1713 | ``` 1714 | 1715 | ## Best practices 1716 | 1717 | When implementing sampling: 1718 | 1719 | 1. Always provide clear, well-structured prompts 1720 | 2. Handle both text and image content appropriately 1721 | 3. Set reasonable token limits 1722 | 4. Include relevant context through `includeContext` 1723 | 5. Validate responses before using them 1724 | 6. Handle errors gracefully 1725 | 7. Consider rate limiting sampling requests 1726 | 8. Document expected sampling behavior 1727 | 9. Test with various model parameters 1728 | 10. Monitor sampling costs 1729 | 1730 | ## Human in the loop controls 1731 | 1732 | Sampling is designed with human oversight in mind: 1733 | 1734 | ### For prompts 1735 | 1736 | * Clients should show users the proposed prompt 1737 | * Users should be able to modify or reject prompts 1738 | * System prompts can be filtered or modified 1739 | * Context inclusion is controlled by the client 1740 | 1741 | ### For completions 1742 | 1743 | * Clients should show users the completion 1744 | * Users should be able to modify or reject completions 1745 | * Clients can filter or modify completions 1746 | * Users control which model is used 1747 | 1748 | ## Security considerations 1749 | 1750 | When implementing sampling: 1751 | 1752 | * Validate all message content 1753 | * Sanitize sensitive information 1754 | * Implement appropriate rate limits 1755 | * Monitor sampling usage 1756 | * Encrypt data in transit 1757 | * Handle user data privacy 1758 | * Audit sampling requests 1759 | * Control cost exposure 1760 | * Implement timeouts 1761 | * Handle model errors gracefully 1762 | 1763 | ## Common patterns 1764 | 1765 | ### Agentic workflows 1766 | 1767 | Sampling enables agentic patterns like: 1768 | 1769 | * Reading and analyzing resources 1770 | * Making decisions based on context 1771 | * Generating structured data 1772 | * Handling multi-step tasks 1773 | * Providing interactive assistance 1774 | 1775 | ### Context management 1776 | 1777 | Best practices for context: 1778 | 1779 | * Request minimal necessary context 1780 | * Structure context clearly 1781 | * Handle context size limits 1782 | * Update context as needed 1783 | * Clean up stale context 1784 | 1785 | ### Error handling 1786 | 1787 | Robust error handling should: 1788 | 1789 | * Catch sampling failures 1790 | * Handle timeout errors 1791 | * Manage rate limits 1792 | * Validate responses 1793 | * Provide fallback behaviors 1794 | * Log errors appropriately 1795 | 1796 | ## Limitations 1797 | 1798 | Be aware of these limitations: 1799 | 1800 | * Sampling depends on client capabilities 1801 | * Users control sampling behavior 1802 | * Context size has limits 1803 | * Rate limits may apply 1804 | * Costs should be considered 1805 | * Model availability varies 1806 | * Response times vary 1807 | * Not all content types supported 1808 | 1809 | 1810 | # Tools 1811 | Source: https://modelcontextprotocol.io/docs/concepts/tools 1812 | 1813 | Enable LLMs to perform actions through your server 1814 | 1815 | Tools are a powerful primitive in the Model Context Protocol (MCP) that enable servers to expose executable functionality to clients. Through tools, LLMs can interact with external systems, perform computations, and take actions in the real world. 1816 | 1817 | <Note> 1818 | Tools are designed to be **model-controlled**, meaning that tools are exposed from servers to clients with the intention of the AI model being able to automatically invoke them (with a human in the loop to grant approval). 1819 | </Note> 1820 | 1821 | ## Overview 1822 | 1823 | Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions. Key aspects of tools include: 1824 | 1825 | * **Discovery**: Clients can list available tools through the `tools/list` endpoint 1826 | * **Invocation**: Tools are called using the `tools/call` endpoint, where servers perform the requested operation and return results 1827 | * **Flexibility**: Tools can range from simple calculations to complex API interactions 1828 | 1829 | Like [resources](/docs/concepts/resources), tools are identified by unique names and can include descriptions to guide their usage. However, unlike resources, tools represent dynamic operations that can modify state or interact with external systems. 1830 | 1831 | ## Tool definition structure 1832 | 1833 | Each tool is defined with the following structure: 1834 | 1835 | ```typescript 1836 | { 1837 | name: string; // Unique identifier for the tool 1838 | description?: string; // Human-readable description 1839 | inputSchema: { // JSON Schema for the tool's parameters 1840 | type: "object", 1841 | properties: { ... } // Tool-specific parameters 1842 | } 1843 | } 1844 | ``` 1845 | 1846 | ## Implementing tools 1847 | 1848 | Here's an example of implementing a basic tool in an MCP server: 1849 | 1850 | <Tabs> 1851 | <Tab title="TypeScript"> 1852 | ```typescript 1853 | const server = new Server({ 1854 | name: "example-server", 1855 | version: "1.0.0" 1856 | }, { 1857 | capabilities: { 1858 | tools: {} 1859 | } 1860 | }); 1861 | 1862 | // Define available tools 1863 | server.setRequestHandler(ListToolsRequestSchema, async () => { 1864 | return { 1865 | tools: [{ 1866 | name: "calculate_sum", 1867 | description: "Add two numbers together", 1868 | inputSchema: { 1869 | type: "object", 1870 | properties: { 1871 | a: { type: "number" }, 1872 | b: { type: "number" } 1873 | }, 1874 | required: ["a", "b"] 1875 | } 1876 | }] 1877 | }; 1878 | }); 1879 | 1880 | // Handle tool execution 1881 | server.setRequestHandler(CallToolRequestSchema, async (request) => { 1882 | if (request.params.name === "calculate_sum") { 1883 | const { a, b } = request.params.arguments; 1884 | return { 1885 | content: [ 1886 | { 1887 | type: "text", 1888 | text: String(a + b) 1889 | } 1890 | ] 1891 | }; 1892 | } 1893 | throw new Error("Tool not found"); 1894 | }); 1895 | ``` 1896 | </Tab> 1897 | 1898 | <Tab title="Python"> 1899 | ```python 1900 | app = Server("example-server") 1901 | 1902 | @app.list_tools() 1903 | async def list_tools() -> list[types.Tool]: 1904 | return [ 1905 | types.Tool( 1906 | name="calculate_sum", 1907 | description="Add two numbers together", 1908 | inputSchema={ 1909 | "type": "object", 1910 | "properties": { 1911 | "a": {"type": "number"}, 1912 | "b": {"type": "number"} 1913 | }, 1914 | "required": ["a", "b"] 1915 | } 1916 | ) 1917 | ] 1918 | 1919 | @app.call_tool() 1920 | async def call_tool( 1921 | name: str, 1922 | arguments: dict 1923 | ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: 1924 | if name == "calculate_sum": 1925 | a = arguments["a"] 1926 | b = arguments["b"] 1927 | result = a + b 1928 | return [types.TextContent(type="text", text=str(result))] 1929 | raise ValueError(f"Tool not found: {name}") 1930 | ``` 1931 | </Tab> 1932 | </Tabs> 1933 | 1934 | ## Example tool patterns 1935 | 1936 | Here are some examples of types of tools that a server could provide: 1937 | 1938 | ### System operations 1939 | 1940 | Tools that interact with the local system: 1941 | 1942 | ```typescript 1943 | { 1944 | name: "execute_command", 1945 | description: "Run a shell command", 1946 | inputSchema: { 1947 | type: "object", 1948 | properties: { 1949 | command: { type: "string" }, 1950 | args: { type: "array", items: { type: "string" } } 1951 | } 1952 | } 1953 | } 1954 | ``` 1955 | 1956 | ### API integrations 1957 | 1958 | Tools that wrap external APIs: 1959 | 1960 | ```typescript 1961 | { 1962 | name: "github_create_issue", 1963 | description: "Create a GitHub issue", 1964 | inputSchema: { 1965 | type: "object", 1966 | properties: { 1967 | title: { type: "string" }, 1968 | body: { type: "string" }, 1969 | labels: { type: "array", items: { type: "string" } } 1970 | } 1971 | } 1972 | } 1973 | ``` 1974 | 1975 | ### Data processing 1976 | 1977 | Tools that transform or analyze data: 1978 | 1979 | ```typescript 1980 | { 1981 | name: "analyze_csv", 1982 | description: "Analyze a CSV file", 1983 | inputSchema: { 1984 | type: "object", 1985 | properties: { 1986 | filepath: { type: "string" }, 1987 | operations: { 1988 | type: "array", 1989 | items: { 1990 | enum: ["sum", "average", "count"] 1991 | } 1992 | } 1993 | } 1994 | } 1995 | } 1996 | ``` 1997 | 1998 | ## Best practices 1999 | 2000 | When implementing tools: 2001 | 2002 | 1. Provide clear, descriptive names and descriptions 2003 | 2. Use detailed JSON Schema definitions for parameters 2004 | 3. Include examples in tool descriptions to demonstrate how the model should use them 2005 | 4. Implement proper error handling and validation 2006 | 5. Use progress reporting for long operations 2007 | 6. Keep tool operations focused and atomic 2008 | 7. Document expected return value structures 2009 | 8. Implement proper timeouts 2010 | 9. Consider rate limiting for resource-intensive operations 2011 | 10. Log tool usage for debugging and monitoring 2012 | 2013 | ## Security considerations 2014 | 2015 | When exposing tools: 2016 | 2017 | ### Input validation 2018 | 2019 | * Validate all parameters against the schema 2020 | * Sanitize file paths and system commands 2021 | * Validate URLs and external identifiers 2022 | * Check parameter sizes and ranges 2023 | * Prevent command injection 2024 | 2025 | ### Access control 2026 | 2027 | * Implement authentication where needed 2028 | * Use appropriate authorization checks 2029 | * Audit tool usage 2030 | * Rate limit requests 2031 | * Monitor for abuse 2032 | 2033 | ### Error handling 2034 | 2035 | * Don't expose internal errors to clients 2036 | * Log security-relevant errors 2037 | * Handle timeouts appropriately 2038 | * Clean up resources after errors 2039 | * Validate return values 2040 | 2041 | ## Tool discovery and updates 2042 | 2043 | MCP supports dynamic tool discovery: 2044 | 2045 | 1. Clients can list available tools at any time 2046 | 2. Servers can notify clients when tools change using `notifications/tools/list_changed` 2047 | 3. Tools can be added or removed during runtime 2048 | 4. Tool definitions can be updated (though this should be done carefully) 2049 | 2050 | ## Error handling 2051 | 2052 | Tool errors should be reported within the result object, not as MCP protocol-level errors. This allows the LLM to see and potentially handle the error. When a tool encounters an error: 2053 | 2054 | 1. Set `isError` to `true` in the result 2055 | 2. Include error details in the `content` array 2056 | 2057 | Here's an example of proper error handling for tools: 2058 | 2059 | <Tabs> 2060 | <Tab title="TypeScript"> 2061 | ```typescript 2062 | try { 2063 | // Tool operation 2064 | const result = performOperation(); 2065 | return { 2066 | content: [ 2067 | { 2068 | type: "text", 2069 | text: `Operation successful: ${result}` 2070 | } 2071 | ] 2072 | }; 2073 | } catch (error) { 2074 | return { 2075 | isError: true, 2076 | content: [ 2077 | { 2078 | type: "text", 2079 | text: `Error: ${error.message}` 2080 | } 2081 | ] 2082 | }; 2083 | } 2084 | ``` 2085 | </Tab> 2086 | 2087 | <Tab title="Python"> 2088 | ```python 2089 | try: 2090 | # Tool operation 2091 | result = perform_operation() 2092 | return types.CallToolResult( 2093 | content=[ 2094 | types.TextContent( 2095 | type="text", 2096 | text=f"Operation successful: {result}" 2097 | ) 2098 | ] 2099 | ) 2100 | except Exception as error: 2101 | return types.CallToolResult( 2102 | isError=True, 2103 | content=[ 2104 | types.TextContent( 2105 | type="text", 2106 | text=f"Error: {str(error)}" 2107 | ) 2108 | ] 2109 | ) 2110 | ``` 2111 | </Tab> 2112 | </Tabs> 2113 | 2114 | This approach allows the LLM to see that an error occurred and potentially take corrective action or request human intervention. 2115 | 2116 | ## Testing tools 2117 | 2118 | A comprehensive testing strategy for MCP tools should cover: 2119 | 2120 | * **Functional testing**: Verify tools execute correctly with valid inputs and handle invalid inputs appropriately 2121 | * **Integration testing**: Test tool interaction with external systems using both real and mocked dependencies 2122 | * **Security testing**: Validate authentication, authorization, input sanitization, and rate limiting 2123 | * **Performance testing**: Check behavior under load, timeout handling, and resource cleanup 2124 | * **Error handling**: Ensure tools properly report errors through the MCP protocol and clean up resources 2125 | 2126 | 2127 | # Transports 2128 | Source: https://modelcontextprotocol.io/docs/concepts/transports 2129 | 2130 | Learn about MCP's communication mechanisms 2131 | 2132 | Transports in the Model Context Protocol (MCP) provide the foundation for communication between clients and servers. A transport handles the underlying mechanics of how messages are sent and received. 2133 | 2134 | ## Message Format 2135 | 2136 | MCP uses [JSON-RPC](https://www.jsonrpc.org/) 2.0 as its wire format. The transport layer is responsible for converting MCP protocol messages into JSON-RPC format for transmission and converting received JSON-RPC messages back into MCP protocol messages. 2137 | 2138 | There are three types of JSON-RPC messages used: 2139 | 2140 | ### Requests 2141 | 2142 | ```typescript 2143 | { 2144 | jsonrpc: "2.0", 2145 | id: number | string, 2146 | method: string, 2147 | params?: object 2148 | } 2149 | ``` 2150 | 2151 | ### Responses 2152 | 2153 | ```typescript 2154 | { 2155 | jsonrpc: "2.0", 2156 | id: number | string, 2157 | result?: object, 2158 | error?: { 2159 | code: number, 2160 | message: string, 2161 | data?: unknown 2162 | } 2163 | } 2164 | ``` 2165 | 2166 | ### Notifications 2167 | 2168 | ```typescript 2169 | { 2170 | jsonrpc: "2.0", 2171 | method: string, 2172 | params?: object 2173 | } 2174 | ``` 2175 | 2176 | ## Built-in Transport Types 2177 | 2178 | MCP includes two standard transport implementations: 2179 | 2180 | ### Standard Input/Output (stdio) 2181 | 2182 | The stdio transport enables communication through standard input and output streams. This is particularly useful for local integrations and command-line tools. 2183 | 2184 | Use stdio when: 2185 | 2186 | * Building command-line tools 2187 | * Implementing local integrations 2188 | * Needing simple process communication 2189 | * Working with shell scripts 2190 | 2191 | <Tabs> 2192 | <Tab title="TypeScript (Server)"> 2193 | ```typescript 2194 | const server = new Server({ 2195 | name: "example-server", 2196 | version: "1.0.0" 2197 | }, { 2198 | capabilities: {} 2199 | }); 2200 | 2201 | const transport = new StdioServerTransport(); 2202 | await server.connect(transport); 2203 | ``` 2204 | </Tab> 2205 | 2206 | <Tab title="TypeScript (Client)"> 2207 | ```typescript 2208 | const client = new Client({ 2209 | name: "example-client", 2210 | version: "1.0.0" 2211 | }, { 2212 | capabilities: {} 2213 | }); 2214 | 2215 | const transport = new StdioClientTransport({ 2216 | command: "./server", 2217 | args: ["--option", "value"] 2218 | }); 2219 | await client.connect(transport); 2220 | ``` 2221 | </Tab> 2222 | 2223 | <Tab title="Python (Server)"> 2224 | ```python 2225 | app = Server("example-server") 2226 | 2227 | async with stdio_server() as streams: 2228 | await app.run( 2229 | streams[0], 2230 | streams[1], 2231 | app.create_initialization_options() 2232 | ) 2233 | ``` 2234 | </Tab> 2235 | 2236 | <Tab title="Python (Client)"> 2237 | ```python 2238 | params = StdioServerParameters( 2239 | command="./server", 2240 | args=["--option", "value"] 2241 | ) 2242 | 2243 | async with stdio_client(params) as streams: 2244 | async with ClientSession(streams[0], streams[1]) as session: 2245 | await session.initialize() 2246 | ``` 2247 | </Tab> 2248 | </Tabs> 2249 | 2250 | ### Server-Sent Events (SSE) 2251 | 2252 | SSE transport enables server-to-client streaming with HTTP POST requests for client-to-server communication. 2253 | 2254 | Use SSE when: 2255 | 2256 | * Only server-to-client streaming is needed 2257 | * Working with restricted networks 2258 | * Implementing simple updates 2259 | 2260 | <Tabs> 2261 | <Tab title="TypeScript (Server)"> 2262 | ```typescript 2263 | import express from "express"; 2264 | 2265 | const app = express(); 2266 | 2267 | const server = new Server({ 2268 | name: "example-server", 2269 | version: "1.0.0" 2270 | }, { 2271 | capabilities: {} 2272 | }); 2273 | 2274 | let transport: SSEServerTransport | null = null; 2275 | 2276 | app.get("/sse", (req, res) => { 2277 | transport = new SSEServerTransport("/messages", res); 2278 | server.connect(transport); 2279 | }); 2280 | 2281 | app.post("/messages", (req, res) => { 2282 | if (transport) { 2283 | transport.handlePostMessage(req, res); 2284 | } 2285 | }); 2286 | 2287 | app.listen(3000); 2288 | ``` 2289 | </Tab> 2290 | 2291 | <Tab title="TypeScript (Client)"> 2292 | ```typescript 2293 | const client = new Client({ 2294 | name: "example-client", 2295 | version: "1.0.0" 2296 | }, { 2297 | capabilities: {} 2298 | }); 2299 | 2300 | const transport = new SSEClientTransport( 2301 | new URL("http://localhost:3000/sse") 2302 | ); 2303 | await client.connect(transport); 2304 | ``` 2305 | </Tab> 2306 | 2307 | <Tab title="Python (Server)"> 2308 | ```python 2309 | from mcp.server.sse import SseServerTransport 2310 | from starlette.applications import Starlette 2311 | from starlette.routing import Route 2312 | 2313 | app = Server("example-server") 2314 | sse = SseServerTransport("/messages") 2315 | 2316 | async def handle_sse(scope, receive, send): 2317 | async with sse.connect_sse(scope, receive, send) as streams: 2318 | await app.run(streams[0], streams[1], app.create_initialization_options()) 2319 | 2320 | async def handle_messages(scope, receive, send): 2321 | await sse.handle_post_message(scope, receive, send) 2322 | 2323 | starlette_app = Starlette( 2324 | routes=[ 2325 | Route("/sse", endpoint=handle_sse), 2326 | Route("/messages", endpoint=handle_messages, methods=["POST"]), 2327 | ] 2328 | ) 2329 | ``` 2330 | </Tab> 2331 | 2332 | <Tab title="Python (Client)"> 2333 | ```python 2334 | async with sse_client("http://localhost:8000/sse") as streams: 2335 | async with ClientSession(streams[0], streams[1]) as session: 2336 | await session.initialize() 2337 | ``` 2338 | </Tab> 2339 | </Tabs> 2340 | 2341 | ## Custom Transports 2342 | 2343 | MCP makes it easy to implement custom transports for specific needs. Any transport implementation just needs to conform to the Transport interface: 2344 | 2345 | You can implement custom transports for: 2346 | 2347 | * Custom network protocols 2348 | * Specialized communication channels 2349 | * Integration with existing systems 2350 | * Performance optimization 2351 | 2352 | <Tabs> 2353 | <Tab title="TypeScript"> 2354 | ```typescript 2355 | interface Transport { 2356 | // Start processing messages 2357 | start(): Promise<void>; 2358 | 2359 | // Send a JSON-RPC message 2360 | send(message: JSONRPCMessage): Promise<void>; 2361 | 2362 | // Close the connection 2363 | close(): Promise<void>; 2364 | 2365 | // Callbacks 2366 | onclose?: () => void; 2367 | onerror?: (error: Error) => void; 2368 | onmessage?: (message: JSONRPCMessage) => void; 2369 | } 2370 | ``` 2371 | </Tab> 2372 | 2373 | <Tab title="Python"> 2374 | Note that while MCP Servers are often implemented with asyncio, we recommend 2375 | implementing low-level interfaces like transports with `anyio` for wider compatibility. 2376 | 2377 | ```python 2378 | @contextmanager 2379 | async def create_transport( 2380 | read_stream: MemoryObjectReceiveStream[JSONRPCMessage | Exception], 2381 | write_stream: MemoryObjectSendStream[JSONRPCMessage] 2382 | ): 2383 | """ 2384 | Transport interface for MCP. 2385 | 2386 | Args: 2387 | read_stream: Stream to read incoming messages from 2388 | write_stream: Stream to write outgoing messages to 2389 | """ 2390 | async with anyio.create_task_group() as tg: 2391 | try: 2392 | # Start processing messages 2393 | tg.start_soon(lambda: process_messages(read_stream)) 2394 | 2395 | # Send messages 2396 | async with write_stream: 2397 | yield write_stream 2398 | 2399 | except Exception as exc: 2400 | # Handle errors 2401 | raise exc 2402 | finally: 2403 | # Clean up 2404 | tg.cancel_scope.cancel() 2405 | await write_stream.aclose() 2406 | await read_stream.aclose() 2407 | ``` 2408 | </Tab> 2409 | </Tabs> 2410 | 2411 | ## Error Handling 2412 | 2413 | Transport implementations should handle various error scenarios: 2414 | 2415 | 1. Connection errors 2416 | 2. Message parsing errors 2417 | 3. Protocol errors 2418 | 4. Network timeouts 2419 | 5. Resource cleanup 2420 | 2421 | Example error handling: 2422 | 2423 | <Tabs> 2424 | <Tab title="TypeScript"> 2425 | ```typescript 2426 | class ExampleTransport implements Transport { 2427 | async start() { 2428 | try { 2429 | // Connection logic 2430 | } catch (error) { 2431 | this.onerror?.(new Error(`Failed to connect: ${error}`)); 2432 | throw error; 2433 | } 2434 | } 2435 | 2436 | async send(message: JSONRPCMessage) { 2437 | try { 2438 | // Sending logic 2439 | } catch (error) { 2440 | this.onerror?.(new Error(`Failed to send message: ${error}`)); 2441 | throw error; 2442 | } 2443 | } 2444 | } 2445 | ``` 2446 | </Tab> 2447 | 2448 | <Tab title="Python"> 2449 | Note that while MCP Servers are often implemented with asyncio, we recommend 2450 | implementing low-level interfaces like transports with `anyio` for wider compatibility. 2451 | 2452 | ```python 2453 | @contextmanager 2454 | async def example_transport(scope: Scope, receive: Receive, send: Send): 2455 | try: 2456 | # Create streams for bidirectional communication 2457 | read_stream_writer, read_stream = anyio.create_memory_object_stream(0) 2458 | write_stream, write_stream_reader = anyio.create_memory_object_stream(0) 2459 | 2460 | async def message_handler(): 2461 | try: 2462 | async with read_stream_writer: 2463 | # Message handling logic 2464 | pass 2465 | except Exception as exc: 2466 | logger.error(f"Failed to handle message: {exc}") 2467 | raise exc 2468 | 2469 | async with anyio.create_task_group() as tg: 2470 | tg.start_soon(message_handler) 2471 | try: 2472 | # Yield streams for communication 2473 | yield read_stream, write_stream 2474 | except Exception as exc: 2475 | logger.error(f"Transport error: {exc}") 2476 | raise exc 2477 | finally: 2478 | tg.cancel_scope.cancel() 2479 | await write_stream.aclose() 2480 | await read_stream.aclose() 2481 | except Exception as exc: 2482 | logger.error(f"Failed to initialize transport: {exc}") 2483 | raise exc 2484 | ``` 2485 | </Tab> 2486 | </Tabs> 2487 | 2488 | ## Best Practices 2489 | 2490 | When implementing or using MCP transport: 2491 | 2492 | 1. Handle connection lifecycle properly 2493 | 2. Implement proper error handling 2494 | 3. Clean up resources on connection close 2495 | 4. Use appropriate timeouts 2496 | 5. Validate messages before sending 2497 | 6. Log transport events for debugging 2498 | 7. Implement reconnection logic when appropriate 2499 | 8. Handle backpressure in message queues 2500 | 9. Monitor connection health 2501 | 10. Implement proper security measures 2502 | 2503 | ## Security Considerations 2504 | 2505 | When implementing transport: 2506 | 2507 | ### Authentication and Authorization 2508 | 2509 | * Implement proper authentication mechanisms 2510 | * Validate client credentials 2511 | * Use secure token handling 2512 | * Implement authorization checks 2513 | 2514 | ### Data Security 2515 | 2516 | * Use TLS for network transport 2517 | * Encrypt sensitive data 2518 | * Validate message integrity 2519 | * Implement message size limits 2520 | * Sanitize input data 2521 | 2522 | ### Network Security 2523 | 2524 | * Implement rate limiting 2525 | * Use appropriate timeouts 2526 | * Handle denial of service scenarios 2527 | * Monitor for unusual patterns 2528 | * Implement proper firewall rules 2529 | 2530 | ## Debugging Transport 2531 | 2532 | Tips for debugging transport issues: 2533 | 2534 | 1. Enable debug logging 2535 | 2. Monitor message flow 2536 | 3. Check connection states 2537 | 4. Validate message formats 2538 | 5. Test error scenarios 2539 | 6. Use network analysis tools 2540 | 7. Implement health checks 2541 | 8. Monitor resource usage 2542 | 9. Test edge cases 2543 | 10. Use proper error tracking 2544 | 2545 | 2546 | # Debugging 2547 | Source: https://modelcontextprotocol.io/docs/tools/debugging 2548 | 2549 | A comprehensive guide to debugging Model Context Protocol (MCP) integrations 2550 | 2551 | Effective debugging is essential when developing MCP servers or integrating them with applications. This guide covers the debugging tools and approaches available in the MCP ecosystem. 2552 | 2553 | <Info> 2554 | This guide is for macOS. Guides for other platforms are coming soon. 2555 | </Info> 2556 | 2557 | ## Debugging tools overview 2558 | 2559 | MCP provides several tools for debugging at different levels: 2560 | 2561 | 1. **MCP Inspector** 2562 | * Interactive debugging interface 2563 | * Direct server testing 2564 | * See the [Inspector guide](/docs/tools/inspector) for details 2565 | 2566 | 2. **Claude Desktop Developer Tools** 2567 | * Integration testing 2568 | * Log collection 2569 | * Chrome DevTools integration 2570 | 2571 | 3. **Server Logging** 2572 | * Custom logging implementations 2573 | * Error tracking 2574 | * Performance monitoring 2575 | 2576 | ## Debugging in Claude Desktop 2577 | 2578 | ### Checking server status 2579 | 2580 | The Claude.app interface provides basic server status information: 2581 | 2582 | 1. Click the <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-plug-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon to view: 2583 | * Connected servers 2584 | * Available prompts and resources 2585 | 2586 | 2. Click the <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon to view: 2587 | * Tools made available to the model 2588 | 2589 | ### Viewing logs 2590 | 2591 | Review detailed MCP logs from Claude Desktop: 2592 | 2593 | ```bash 2594 | # Follow logs in real-time 2595 | tail -n 20 -F ~/Library/Logs/Claude/mcp*.log 2596 | ``` 2597 | 2598 | The logs capture: 2599 | 2600 | * Server connection events 2601 | * Configuration issues 2602 | * Runtime errors 2603 | * Message exchanges 2604 | 2605 | ### Using Chrome DevTools 2606 | 2607 | Access Chrome's developer tools inside Claude Desktop to investigate client-side errors: 2608 | 2609 | 1. Create a `developer_settings.json` file with `allowDevTools` set to true: 2610 | 2611 | ```bash 2612 | echo '{"allowDevTools": true}' > ~/Library/Application\ Support/Claude/developer_settings.json 2613 | ``` 2614 | 2615 | 2. Open DevTools: `Command-Option-Shift-i` 2616 | 2617 | Note: You'll see two DevTools windows: 2618 | 2619 | * Main content window 2620 | * App title bar window 2621 | 2622 | Use the Console panel to inspect client-side errors. 2623 | 2624 | Use the Network panel to inspect: 2625 | 2626 | * Message payloads 2627 | * Connection timing 2628 | 2629 | ## Common issues 2630 | 2631 | ### Working directory 2632 | 2633 | When using MCP servers with Claude Desktop: 2634 | 2635 | * The working directory for servers launched via `claude_desktop_config.json` may be undefined (like `/` on macOS) since Claude Desktop could be started from anywhere 2636 | * Always use absolute paths in your configuration and `.env` files to ensure reliable operation 2637 | * For testing servers directly via command line, the working directory will be where you run the command 2638 | 2639 | For example in `claude_desktop_config.json`, use: 2640 | 2641 | ```json 2642 | { 2643 | "command": "npx", 2644 | "args": ["-y", "@modelcontextprotocol/server-filesystem", "/Users/username/data"] 2645 | } 2646 | ``` 2647 | 2648 | Instead of relative paths like `./data` 2649 | 2650 | ### Environment variables 2651 | 2652 | MCP servers inherit only a subset of environment variables automatically, like `USER`, `HOME`, and `PATH`. 2653 | 2654 | To override the default variables or provide your own, you can specify an `env` key in `claude_desktop_config.json`: 2655 | 2656 | ```json 2657 | { 2658 | "myserver": { 2659 | "command": "mcp-server-myapp", 2660 | "env": { 2661 | "MYAPP_API_KEY": "some_key", 2662 | } 2663 | } 2664 | } 2665 | ``` 2666 | 2667 | ### Server initialization 2668 | 2669 | Common initialization problems: 2670 | 2671 | 1. **Path Issues** 2672 | * Incorrect server executable path 2673 | * Missing required files 2674 | * Permission problems 2675 | * Try using an absolute path for `command` 2676 | 2677 | 2. **Configuration Errors** 2678 | * Invalid JSON syntax 2679 | * Missing required fields 2680 | * Type mismatches 2681 | 2682 | 3. **Environment Problems** 2683 | * Missing environment variables 2684 | * Incorrect variable values 2685 | * Permission restrictions 2686 | 2687 | ### Connection problems 2688 | 2689 | When servers fail to connect: 2690 | 2691 | 1. Check Claude Desktop logs 2692 | 2. Verify server process is running 2693 | 3. Test standalone with [Inspector](/docs/tools/inspector) 2694 | 4. Verify protocol compatibility 2695 | 2696 | ## Implementing logging 2697 | 2698 | ### Server-side logging 2699 | 2700 | When building a server that uses the local stdio [transport](/docs/concepts/transports), all messages logged to stderr (standard error) will be captured by the host application (e.g., Claude Desktop) automatically. 2701 | 2702 | <Warning> 2703 | Local MCP servers should not log messages to stdout (standard out), as this will interfere with protocol operation. 2704 | </Warning> 2705 | 2706 | For all [transports](/docs/concepts/transports), you can also provide logging to the client by sending a log message notification: 2707 | 2708 | <Tabs> 2709 | <Tab title="Python"> 2710 | ```python 2711 | server.request_context.session.send_log_message( 2712 | level="info", 2713 | data="Server started successfully", 2714 | ) 2715 | ``` 2716 | </Tab> 2717 | 2718 | <Tab title="TypeScript"> 2719 | ```typescript 2720 | server.sendLoggingMessage({ 2721 | level: "info", 2722 | data: "Server started successfully", 2723 | }); 2724 | ``` 2725 | </Tab> 2726 | </Tabs> 2727 | 2728 | Important events to log: 2729 | 2730 | * Initialization steps 2731 | * Resource access 2732 | * Tool execution 2733 | * Error conditions 2734 | * Performance metrics 2735 | 2736 | ### Client-side logging 2737 | 2738 | In client applications: 2739 | 2740 | 1. Enable debug logging 2741 | 2. Monitor network traffic 2742 | 3. Track message exchanges 2743 | 4. Record error states 2744 | 2745 | ## Debugging workflow 2746 | 2747 | ### Development cycle 2748 | 2749 | 1. Initial Development 2750 | * Use [Inspector](/docs/tools/inspector) for basic testing 2751 | * Implement core functionality 2752 | * Add logging points 2753 | 2754 | 2. Integration Testing 2755 | * Test in Claude Desktop 2756 | * Monitor logs 2757 | * Check error handling 2758 | 2759 | ### Testing changes 2760 | 2761 | To test changes efficiently: 2762 | 2763 | * **Configuration changes**: Restart Claude Desktop 2764 | * **Server code changes**: Use Command-R to reload 2765 | * **Quick iteration**: Use [Inspector](/docs/tools/inspector) during development 2766 | 2767 | ## Best practices 2768 | 2769 | ### Logging strategy 2770 | 2771 | 1. **Structured Logging** 2772 | * Use consistent formats 2773 | * Include context 2774 | * Add timestamps 2775 | * Track request IDs 2776 | 2777 | 2. **Error Handling** 2778 | * Log stack traces 2779 | * Include error context 2780 | * Track error patterns 2781 | * Monitor recovery 2782 | 2783 | 3. **Performance Tracking** 2784 | * Log operation timing 2785 | * Monitor resource usage 2786 | * Track message sizes 2787 | * Measure latency 2788 | 2789 | ### Security considerations 2790 | 2791 | When debugging: 2792 | 2793 | 1. **Sensitive Data** 2794 | * Sanitize logs 2795 | * Protect credentials 2796 | * Mask personal information 2797 | 2798 | 2. **Access Control** 2799 | * Verify permissions 2800 | * Check authentication 2801 | * Monitor access patterns 2802 | 2803 | ## Getting help 2804 | 2805 | When encountering issues: 2806 | 2807 | 1. **First Steps** 2808 | * Check server logs 2809 | * Test with [Inspector](/docs/tools/inspector) 2810 | * Review configuration 2811 | * Verify environment 2812 | 2813 | 2. **Support Channels** 2814 | * GitHub issues 2815 | * GitHub discussions 2816 | 2817 | 3. **Providing Information** 2818 | * Log excerpts 2819 | * Configuration files 2820 | * Steps to reproduce 2821 | * Environment details 2822 | 2823 | ## Next steps 2824 | 2825 | <CardGroup cols={2}> 2826 | <Card title="MCP Inspector" icon="magnifying-glass" href="/docs/tools/inspector"> 2827 | Learn to use the MCP Inspector 2828 | </Card> 2829 | </CardGroup> 2830 | 2831 | 2832 | # Inspector 2833 | Source: https://modelcontextprotocol.io/docs/tools/inspector 2834 | 2835 | In-depth guide to using the MCP Inspector for testing and debugging Model Context Protocol servers 2836 | 2837 | The [MCP Inspector](https://github.com/modelcontextprotocol/inspector) is an interactive developer tool for testing and debugging MCP servers. While the [Debugging Guide](/docs/tools/debugging) covers the Inspector as part of the overall debugging toolkit, this document provides a detailed exploration of the Inspector's features and capabilities. 2838 | 2839 | ## Getting started 2840 | 2841 | ### Installation and basic usage 2842 | 2843 | The Inspector runs directly through `npx` without requiring installation: 2844 | 2845 | ```bash 2846 | npx @modelcontextprotocol/inspector <command> 2847 | ``` 2848 | 2849 | ```bash 2850 | npx @modelcontextprotocol/inspector <command> <arg1> <arg2> 2851 | ``` 2852 | 2853 | #### Inspecting servers from NPM or PyPi 2854 | 2855 | A common way to start server packages from [NPM](https://npmjs.com) or [PyPi](https://pypi.com). 2856 | 2857 | <Tabs> 2858 | <Tab title="NPM package"> 2859 | ```bash 2860 | npx -y @modelcontextprotocol/inspector npx <package-name> <args> 2861 | # For example 2862 | npx -y @modelcontextprotocol/inspector npx server-postgres postgres://127.0.0.1/testdb 2863 | ``` 2864 | </Tab> 2865 | 2866 | <Tab title="PyPi package"> 2867 | ```bash 2868 | npx @modelcontextprotocol/inspector uvx <package-name> <args> 2869 | # For example 2870 | npx @modelcontextprotocol/inspector uvx mcp-server-git --repository ~/code/mcp/servers.git 2871 | ``` 2872 | </Tab> 2873 | </Tabs> 2874 | 2875 | #### Inspecting locally developed servers 2876 | 2877 | To inspect servers locally developed or downloaded as a repository, the most common 2878 | way is: 2879 | 2880 | <Tabs> 2881 | <Tab title="TypeScript"> 2882 | ```bash 2883 | npx @modelcontextprotocol/inspector node path/to/server/index.js args... 2884 | ``` 2885 | </Tab> 2886 | 2887 | <Tab title="Python"> 2888 | ```bash 2889 | npx @modelcontextprotocol/inspector \ 2890 | uv \ 2891 | --directory path/to/server \ 2892 | run \ 2893 | package-name \ 2894 | args... 2895 | ``` 2896 | </Tab> 2897 | </Tabs> 2898 | 2899 | Please carefully read any attached README for the most accurate instructions. 2900 | 2901 | ## Feature overview 2902 | 2903 | <Frame caption="The MCP Inspector interface"> 2904 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/mcp-inspector.png" /> 2905 | </Frame> 2906 | 2907 | The Inspector provides several features for interacting with your MCP server: 2908 | 2909 | ### Server connection pane 2910 | 2911 | * Allows selecting the [transport](/docs/concepts/transports) for connecting to the server 2912 | * For local servers, supports customizing the command-line arguments and environment 2913 | 2914 | ### Resources tab 2915 | 2916 | * Lists all available resources 2917 | * Shows resource metadata (MIME types, descriptions) 2918 | * Allows resource content inspection 2919 | * Supports subscription testing 2920 | 2921 | ### Prompts tab 2922 | 2923 | * Displays available prompt templates 2924 | * Shows prompt arguments and descriptions 2925 | * Enables prompt testing with custom arguments 2926 | * Previews generated messages 2927 | 2928 | ### Tools tab 2929 | 2930 | * Lists available tools 2931 | * Shows tool schemas and descriptions 2932 | * Enables tool testing with custom inputs 2933 | * Displays tool execution results 2934 | 2935 | ### Notifications pane 2936 | 2937 | * Presents all logs recorded from the server 2938 | * Shows notifications received from the server 2939 | 2940 | ## Best practices 2941 | 2942 | ### Development workflow 2943 | 2944 | 1. Start Development 2945 | * Launch Inspector with your server 2946 | * Verify basic connectivity 2947 | * Check capability negotiation 2948 | 2949 | 2. Iterative testing 2950 | * Make server changes 2951 | * Rebuild the server 2952 | * Reconnect the Inspector 2953 | * Test affected features 2954 | * Monitor messages 2955 | 2956 | 3. Test edge cases 2957 | * Invalid inputs 2958 | * Missing prompt arguments 2959 | * Concurrent operations 2960 | * Verify error handling and error responses 2961 | 2962 | ## Next steps 2963 | 2964 | <CardGroup cols={2}> 2965 | <Card title="Inspector Repository" icon="github" href="https://github.com/modelcontextprotocol/inspector"> 2966 | Check out the MCP Inspector source code 2967 | </Card> 2968 | 2969 | <Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging"> 2970 | Learn about broader debugging strategies 2971 | </Card> 2972 | </CardGroup> 2973 | 2974 | 2975 | # Example Servers 2976 | Source: https://modelcontextprotocol.io/examples 2977 | 2978 | A list of example servers and implementations 2979 | 2980 | This page showcases various Model Context Protocol (MCP) servers that demonstrate the protocol's capabilities and versatility. These servers enable Large Language Models (LLMs) to securely access tools and data sources. 2981 | 2982 | ## Reference implementations 2983 | 2984 | These official reference servers demonstrate core MCP features and SDK usage: 2985 | 2986 | ### Data and file systems 2987 | 2988 | * **[Filesystem](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem)** - Secure file operations with configurable access controls 2989 | * **[PostgreSQL](https://github.com/modelcontextprotocol/servers/tree/main/src/postgres)** - Read-only database access with schema inspection capabilities 2990 | * **[SQLite](https://github.com/modelcontextprotocol/servers/tree/main/src/sqlite)** - Database interaction and business intelligence features 2991 | * **[Google Drive](https://github.com/modelcontextprotocol/servers/tree/main/src/gdrive)** - File access and search capabilities for Google Drive 2992 | 2993 | ### Development tools 2994 | 2995 | * **[Git](https://github.com/modelcontextprotocol/servers/tree/main/src/git)** - Tools to read, search, and manipulate Git repositories 2996 | * **[GitHub](https://github.com/modelcontextprotocol/servers/tree/main/src/github)** - Repository management, file operations, and GitHub API integration 2997 | * **[GitLab](https://github.com/modelcontextprotocol/servers/tree/main/src/gitlab)** - GitLab API integration enabling project management 2998 | * **[Sentry](https://github.com/modelcontextprotocol/servers/tree/main/src/sentry)** - Retrieving and analyzing issues from Sentry.io 2999 | 3000 | ### Web and browser automation 3001 | 3002 | * **[Brave Search](https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search)** - Web and local search using Brave's Search API 3003 | * **[Fetch](https://github.com/modelcontextprotocol/servers/tree/main/src/fetch)** - Web content fetching and conversion optimized for LLM usage 3004 | * **[Puppeteer](https://github.com/modelcontextprotocol/servers/tree/main/src/puppeteer)** - Browser automation and web scraping capabilities 3005 | 3006 | ### Productivity and communication 3007 | 3008 | * **[Slack](https://github.com/modelcontextprotocol/servers/tree/main/src/slack)** - Channel management and messaging capabilities 3009 | * **[Google Maps](https://github.com/modelcontextprotocol/servers/tree/main/src/google-maps)** - Location services, directions, and place details 3010 | * **[Memory](https://github.com/modelcontextprotocol/servers/tree/main/src/memory)** - Knowledge graph-based persistent memory system 3011 | 3012 | ### AI and specialized tools 3013 | 3014 | * **[EverArt](https://github.com/modelcontextprotocol/servers/tree/main/src/everart)** - AI image generation using various models 3015 | * **[Sequential Thinking](https://github.com/modelcontextprotocol/servers/tree/main/src/sequentialthinking)** - Dynamic problem-solving through thought sequences 3016 | * **[AWS KB Retrieval](https://github.com/modelcontextprotocol/servers/tree/main/src/aws-kb-retrieval-server)** - Retrieval from AWS Knowledge Base using Bedrock Agent Runtime 3017 | 3018 | ## Official integrations 3019 | 3020 | These MCP servers are maintained by companies for their platforms: 3021 | 3022 | * **[Axiom](https://github.com/axiomhq/mcp-server-axiom)** - Query and analyze logs, traces, and event data using natural language 3023 | * **[Browserbase](https://github.com/browserbase/mcp-server-browserbase)** - Automate browser interactions in the cloud 3024 | * **[Cloudflare](https://github.com/cloudflare/mcp-server-cloudflare)** - Deploy and manage resources on the Cloudflare developer platform 3025 | * **[E2B](https://github.com/e2b-dev/mcp-server)** - Execute code in secure cloud sandboxes 3026 | * **[Neon](https://github.com/neondatabase/mcp-server-neon)** - Interact with the Neon serverless Postgres platform 3027 | * **[Obsidian Markdown Notes](https://github.com/calclavia/mcp-obsidian)** - Read and search through Markdown notes in Obsidian vaults 3028 | * **[Qdrant](https://github.com/qdrant/mcp-server-qdrant/)** - Implement semantic memory using the Qdrant vector search engine 3029 | * **[Raygun](https://github.com/MindscapeHQ/mcp-server-raygun)** - Access crash reporting and monitoring data 3030 | * **[Search1API](https://github.com/fatwang2/search1api-mcp)** - Unified API for search, crawling, and sitemaps 3031 | * **[Stripe](https://github.com/stripe/agent-toolkit)** - Interact with the Stripe API 3032 | * **[Tinybird](https://github.com/tinybirdco/mcp-tinybird)** - Interface with the Tinybird serverless ClickHouse platform 3033 | 3034 | ## Community highlights 3035 | 3036 | A growing ecosystem of community-developed servers extends MCP's capabilities: 3037 | 3038 | * **[Docker](https://github.com/ckreiling/mcp-server-docker)** - Manage containers, images, volumes, and networks 3039 | * **[Kubernetes](https://github.com/Flux159/mcp-server-kubernetes)** - Manage pods, deployments, and services 3040 | * **[Linear](https://github.com/jerhadf/linear-mcp-server)** - Project management and issue tracking 3041 | * **[Snowflake](https://github.com/datawiz168/mcp-snowflake-service)** - Interact with Snowflake databases 3042 | * **[Spotify](https://github.com/varunneal/spotify-mcp)** - Control Spotify playback and manage playlists 3043 | * **[Todoist](https://github.com/abhiz123/todoist-mcp-server)** - Task management integration 3044 | 3045 | > **Note:** Community servers are untested and should be used at your own risk. They are not affiliated with or endorsed by Anthropic. 3046 | 3047 | For a complete list of community servers, visit the [MCP Servers Repository](https://github.com/modelcontextprotocol/servers). 3048 | 3049 | ## Getting started 3050 | 3051 | ### Using reference servers 3052 | 3053 | TypeScript-based servers can be used directly with `npx`: 3054 | 3055 | ```bash 3056 | npx -y @modelcontextprotocol/server-memory 3057 | ``` 3058 | 3059 | Python-based servers can be used with `uvx` (recommended) or `pip`: 3060 | 3061 | ```bash 3062 | # Using uvx 3063 | uvx mcp-server-git 3064 | 3065 | # Using pip 3066 | pip install mcp-server-git 3067 | python -m mcp_server_git 3068 | ``` 3069 | 3070 | ### Configuring with Claude 3071 | 3072 | To use an MCP server with Claude, add it to your configuration: 3073 | 3074 | ```json 3075 | { 3076 | "mcpServers": { 3077 | "memory": { 3078 | "command": "npx", 3079 | "args": ["-y", "@modelcontextprotocol/server-memory"] 3080 | }, 3081 | "filesystem": { 3082 | "command": "npx", 3083 | "args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"] 3084 | }, 3085 | "github": { 3086 | "command": "npx", 3087 | "args": ["-y", "@modelcontextprotocol/server-github"], 3088 | "env": { 3089 | "GITHUB_PERSONAL_ACCESS_TOKEN": "<YOUR_TOKEN>" 3090 | } 3091 | } 3092 | } 3093 | } 3094 | ``` 3095 | 3096 | ## Additional resources 3097 | 3098 | * [MCP Servers Repository](https://github.com/modelcontextprotocol/servers) - Complete collection of reference implementations and community servers 3099 | * [Awesome MCP Servers](https://github.com/punkpeye/awesome-mcp-servers) - Curated list of MCP servers 3100 | * [MCP CLI](https://github.com/wong2/mcp-cli) - Command-line inspector for testing MCP servers 3101 | * [MCP Get](https://mcp-get.com) - Tool for installing and managing MCP servers 3102 | * [Supergateway](https://github.com/supercorp-ai/supergateway) - Run MCP stdio servers over SSE 3103 | 3104 | Visit our [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions) to engage with the MCP community. 3105 | 3106 | 3107 | # Introduction 3108 | Source: https://modelcontextprotocol.io/introduction 3109 | 3110 | Get started with the Model Context Protocol (MCP) 3111 | 3112 | <Note>Java SDK released! Check out [what else is new.](/development/updates)</Note> 3113 | 3114 | MCP is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications. Just as USB-C provides a standardized way to connect your devices to various peripherals and accessories, MCP provides a standardized way to connect AI models to different data sources and tools. 3115 | 3116 | ## Why MCP? 3117 | 3118 | MCP helps you build agents and complex workflows on top of LLMs. LLMs frequently need to integrate with data and tools, and MCP provides: 3119 | 3120 | * A growing list of pre-built integrations that your LLM can directly plug into 3121 | * The flexibility to switch between LLM providers and vendors 3122 | * Best practices for securing your data within your infrastructure 3123 | 3124 | ### General architecture 3125 | 3126 | At its core, MCP follows a client-server architecture where a host application can connect to multiple servers: 3127 | 3128 | ```mermaid 3129 | flowchart LR 3130 | subgraph "Your Computer" 3131 | Host["Host with MCP Client\n(Claude, IDEs, Tools)"] 3132 | S1["MCP Server A"] 3133 | S2["MCP Server B"] 3134 | S3["MCP Server C"] 3135 | Host <-->|"MCP Protocol"| S1 3136 | Host <-->|"MCP Protocol"| S2 3137 | Host <-->|"MCP Protocol"| S3 3138 | S1 <--> D1[("Local\nData Source A")] 3139 | S2 <--> D2[("Local\nData Source B")] 3140 | end 3141 | subgraph "Internet" 3142 | S3 <-->|"Web APIs"| D3[("Remote\nService C")] 3143 | end 3144 | ``` 3145 | 3146 | * **MCP Hosts**: Programs like Claude Desktop, IDEs, or AI tools that want to access data through MCP 3147 | * **MCP Clients**: Protocol clients that maintain 1:1 connections with servers 3148 | * **MCP Servers**: Lightweight programs that each expose specific capabilities through the standardized Model Context Protocol 3149 | * **Local Data Sources**: Your computer's files, databases, and services that MCP servers can securely access 3150 | * **Remote Services**: External systems available over the internet (e.g., through APIs) that MCP servers can connect to 3151 | 3152 | ## Get started 3153 | 3154 | Choose the path that best fits your needs: 3155 | 3156 | #### Quick Starts 3157 | 3158 | <CardGroup cols={2}> 3159 | <Card title="For Server Developers" icon="bolt" href="/quickstart/server"> 3160 | Get started building your own server to use in Claude for Desktop and other clients 3161 | </Card> 3162 | 3163 | <Card title="For Client Developers" icon="bolt" href="/quickstart/client"> 3164 | Get started building your own client that can integrate with all MCP servers 3165 | </Card> 3166 | 3167 | <Card title="For Claude Desktop Users" icon="bolt" href="/quickstart/user"> 3168 | Get started using pre-built servers in Claude for Desktop 3169 | </Card> 3170 | </CardGroup> 3171 | 3172 | #### Examples 3173 | 3174 | <CardGroup cols={2}> 3175 | <Card title="Example Servers" icon="grid" href="/examples"> 3176 | Check out our gallery of official MCP servers and implementations 3177 | </Card> 3178 | 3179 | <Card title="Example Clients" icon="cubes" href="/clients"> 3180 | View the list of clients that support MCP integrations 3181 | </Card> 3182 | </CardGroup> 3183 | 3184 | ## Tutorials 3185 | 3186 | <CardGroup cols={2}> 3187 | <Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms"> 3188 | Learn how to use LLMs like Claude to speed up your MCP development 3189 | </Card> 3190 | 3191 | <Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging"> 3192 | Learn how to effectively debug MCP servers and integrations 3193 | </Card> 3194 | 3195 | <Card title="MCP Inspector" icon="magnifying-glass" href="/docs/tools/inspector"> 3196 | Test and inspect your MCP servers with our interactive debugging tool 3197 | </Card> 3198 | </CardGroup> 3199 | 3200 | ## Explore MCP 3201 | 3202 | Dive deeper into MCP's core concepts and capabilities: 3203 | 3204 | <CardGroup cols={2}> 3205 | <Card title="Core architecture" icon="sitemap" href="/docs/concepts/architecture"> 3206 | Understand how MCP connects clients, servers, and LLMs 3207 | </Card> 3208 | 3209 | <Card title="Resources" icon="database" href="/docs/concepts/resources"> 3210 | Expose data and content from your servers to LLMs 3211 | </Card> 3212 | 3213 | <Card title="Prompts" icon="message" href="/docs/concepts/prompts"> 3214 | Create reusable prompt templates and workflows 3215 | </Card> 3216 | 3217 | <Card title="Tools" icon="wrench" href="/docs/concepts/tools"> 3218 | Enable LLMs to perform actions through your server 3219 | </Card> 3220 | 3221 | <Card title="Sampling" icon="robot" href="/docs/concepts/sampling"> 3222 | Let your servers request completions from LLMs 3223 | </Card> 3224 | 3225 | <Card title="Transports" icon="network-wired" href="/docs/concepts/transports"> 3226 | Learn about MCP's communication mechanism 3227 | </Card> 3228 | </CardGroup> 3229 | 3230 | ## Contributing 3231 | 3232 | Want to contribute? Check out our [Contributing Guide](/development/contributing) to learn how you can help improve MCP. 3233 | 3234 | ## Support and Feedback 3235 | 3236 | Here's how to get help or provide feedback: 3237 | 3238 | * For bug reports and feature requests related to the MCP specification, SDKs, or documentation (open source), please [create a GitHub issue](https://github.com/modelcontextprotocol) 3239 | * For discussions or Q\&A about the MCP specification, use the [specification discussions](https://github.com/modelcontextprotocol/specification/discussions) 3240 | * For discussions or Q\&A about other MCP open source components, use the [organization discussions](https://github.com/orgs/modelcontextprotocol/discussions) 3241 | * For bug reports, feature requests, and questions related to Claude.app and claude.ai's MCP integration, please email [[email protected]](mailto:[email protected]) 3242 | 3243 | 3244 | # For Client Developers 3245 | Source: https://modelcontextprotocol.io/quickstart/client 3246 | 3247 | Get started building your own client that can integrate with all MCP servers. 3248 | 3249 | In this tutorial, you'll learn how to build a LLM-powered chatbot client that connects to MCP servers. It helps to have gone through the [Server quickstart](/quickstart/server) that guides you through the basic of building your first server. 3250 | 3251 | <Tabs> 3252 | <Tab title="Python"> 3253 | [You can find the complete code for this tutorial here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/mcp-client-python) 3254 | 3255 | ## System Requirements 3256 | 3257 | Before starting, ensure your system meets these requirements: 3258 | 3259 | * Mac or Windows computer 3260 | * Latest Python version installed 3261 | * Latest version of `uv` installed 3262 | 3263 | ## Setting Up Your Environment 3264 | 3265 | First, create a new Python project with `uv`: 3266 | 3267 | ```bash 3268 | # Create project directory 3269 | uv init mcp-client 3270 | cd mcp-client 3271 | 3272 | # Create virtual environment 3273 | uv venv 3274 | 3275 | # Activate virtual environment 3276 | # On Windows: 3277 | .venv\Scripts\activate 3278 | # On Unix or MacOS: 3279 | source .venv/bin/activate 3280 | 3281 | # Install required packages 3282 | uv add mcp anthropic python-dotenv 3283 | 3284 | # Remove boilerplate files 3285 | rm hello.py 3286 | 3287 | # Create our main file 3288 | touch client.py 3289 | ``` 3290 | 3291 | ## Setting Up Your API Key 3292 | 3293 | You'll need an Anthropic API key from the [Anthropic Console](https://console.anthropic.com/settings/keys). 3294 | 3295 | Create a `.env` file to store it: 3296 | 3297 | ```bash 3298 | # Create .env file 3299 | touch .env 3300 | ``` 3301 | 3302 | Add your key to the `.env` file: 3303 | 3304 | ```bash 3305 | ANTHROPIC_API_KEY=<your key here> 3306 | ``` 3307 | 3308 | Add `.env` to your `.gitignore`: 3309 | 3310 | ```bash 3311 | echo ".env" >> .gitignore 3312 | ``` 3313 | 3314 | <Warning> 3315 | Make sure you keep your `ANTHROPIC_API_KEY` secure! 3316 | </Warning> 3317 | 3318 | ## Creating the Client 3319 | 3320 | ### Basic Client Structure 3321 | 3322 | First, let's set up our imports and create the basic client class: 3323 | 3324 | ```python 3325 | import asyncio 3326 | from typing import Optional 3327 | from contextlib import AsyncExitStack 3328 | 3329 | from mcp import ClientSession, StdioServerParameters 3330 | from mcp.client.stdio import stdio_client 3331 | 3332 | from anthropic import Anthropic 3333 | from dotenv import load_dotenv 3334 | 3335 | load_dotenv() # load environment variables from .env 3336 | 3337 | class MCPClient: 3338 | def __init__(self): 3339 | # Initialize session and client objects 3340 | self.session: Optional[ClientSession] = None 3341 | self.exit_stack = AsyncExitStack() 3342 | self.anthropic = Anthropic() 3343 | # methods will go here 3344 | ``` 3345 | 3346 | ### Server Connection Management 3347 | 3348 | Next, we'll implement the method to connect to an MCP server: 3349 | 3350 | ```python 3351 | async def connect_to_server(self, server_script_path: str): 3352 | """Connect to an MCP server 3353 | 3354 | Args: 3355 | server_script_path: Path to the server script (.py or .js) 3356 | """ 3357 | is_python = server_script_path.endswith('.py') 3358 | is_js = server_script_path.endswith('.js') 3359 | if not (is_python or is_js): 3360 | raise ValueError("Server script must be a .py or .js file") 3361 | 3362 | command = "python" if is_python else "node" 3363 | server_params = StdioServerParameters( 3364 | command=command, 3365 | args=[server_script_path], 3366 | env=None 3367 | ) 3368 | 3369 | stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params)) 3370 | self.stdio, self.write = stdio_transport 3371 | self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write)) 3372 | 3373 | await self.session.initialize() 3374 | 3375 | # List available tools 3376 | response = await self.session.list_tools() 3377 | tools = response.tools 3378 | print("\nConnected to server with tools:", [tool.name for tool in tools]) 3379 | ``` 3380 | 3381 | ### Query Processing Logic 3382 | 3383 | Now let's add the core functionality for processing queries and handling tool calls: 3384 | 3385 | ```python 3386 | async def process_query(self, query: str) -> str: 3387 | """Process a query using Claude and available tools""" 3388 | messages = [ 3389 | { 3390 | "role": "user", 3391 | "content": query 3392 | } 3393 | ] 3394 | 3395 | response = await self.session.list_tools() 3396 | available_tools = [{ 3397 | "name": tool.name, 3398 | "description": tool.description, 3399 | "input_schema": tool.inputSchema 3400 | } for tool in response.tools] 3401 | 3402 | # Initial Claude API call 3403 | response = self.anthropic.messages.create( 3404 | model="claude-3-5-sonnet-20241022", 3405 | max_tokens=1000, 3406 | messages=messages, 3407 | tools=available_tools 3408 | ) 3409 | 3410 | # Process response and handle tool calls 3411 | final_text = [] 3412 | 3413 | assistant_message_content = [] 3414 | for content in response.content: 3415 | if content.type == 'text': 3416 | final_text.append(content.text) 3417 | assistant_message_content.append(content) 3418 | elif content.type == 'tool_use': 3419 | tool_name = content.name 3420 | tool_args = content.input 3421 | 3422 | # Execute tool call 3423 | result = await self.session.call_tool(tool_name, tool_args) 3424 | final_text.append(f"[Calling tool {tool_name} with args {tool_args}]") 3425 | 3426 | assistant_message_content.append(content) 3427 | messages.append({ 3428 | "role": "assistant", 3429 | "content": assistant_message_content 3430 | }) 3431 | messages.append({ 3432 | "role": "user", 3433 | "content": [ 3434 | { 3435 | "type": "tool_result", 3436 | "tool_use_id": content.id, 3437 | "content": result.content 3438 | } 3439 | ] 3440 | }) 3441 | 3442 | # Get next response from Claude 3443 | response = self.anthropic.messages.create( 3444 | model="claude-3-5-sonnet-20241022", 3445 | max_tokens=1000, 3446 | messages=messages, 3447 | tools=available_tools 3448 | ) 3449 | 3450 | final_text.append(response.content[0].text) 3451 | 3452 | return "\n".join(final_text) 3453 | ``` 3454 | 3455 | ### Interactive Chat Interface 3456 | 3457 | Now we'll add the chat loop and cleanup functionality: 3458 | 3459 | ```python 3460 | async def chat_loop(self): 3461 | """Run an interactive chat loop""" 3462 | print("\nMCP Client Started!") 3463 | print("Type your queries or 'quit' to exit.") 3464 | 3465 | while True: 3466 | try: 3467 | query = input("\nQuery: ").strip() 3468 | 3469 | if query.lower() == 'quit': 3470 | break 3471 | 3472 | response = await self.process_query(query) 3473 | print("\n" + response) 3474 | 3475 | except Exception as e: 3476 | print(f"\nError: {str(e)}") 3477 | 3478 | async def cleanup(self): 3479 | """Clean up resources""" 3480 | await self.exit_stack.aclose() 3481 | ``` 3482 | 3483 | ### Main Entry Point 3484 | 3485 | Finally, we'll add the main execution logic: 3486 | 3487 | ```python 3488 | async def main(): 3489 | if len(sys.argv) < 2: 3490 | print("Usage: python client.py <path_to_server_script>") 3491 | sys.exit(1) 3492 | 3493 | client = MCPClient() 3494 | try: 3495 | await client.connect_to_server(sys.argv[1]) 3496 | await client.chat_loop() 3497 | finally: 3498 | await client.cleanup() 3499 | 3500 | if __name__ == "__main__": 3501 | import sys 3502 | asyncio.run(main()) 3503 | ``` 3504 | 3505 | You can find the complete `client.py` file [here.](https://gist.github.com/zckly/f3f28ea731e096e53b39b47bf0a2d4b1) 3506 | 3507 | ## Key Components Explained 3508 | 3509 | ### 1. Client Initialization 3510 | 3511 | * The `MCPClient` class initializes with session management and API clients 3512 | * Uses `AsyncExitStack` for proper resource management 3513 | * Configures the Anthropic client for Claude interactions 3514 | 3515 | ### 2. Server Connection 3516 | 3517 | * Supports both Python and Node.js servers 3518 | * Validates server script type 3519 | * Sets up proper communication channels 3520 | * Initializes the session and lists available tools 3521 | 3522 | ### 3. Query Processing 3523 | 3524 | * Maintains conversation context 3525 | * Handles Claude's responses and tool calls 3526 | * Manages the message flow between Claude and tools 3527 | * Combines results into a coherent response 3528 | 3529 | ### 4. Interactive Interface 3530 | 3531 | * Provides a simple command-line interface 3532 | * Handles user input and displays responses 3533 | * Includes basic error handling 3534 | * Allows graceful exit 3535 | 3536 | ### 5. Resource Management 3537 | 3538 | * Proper cleanup of resources 3539 | * Error handling for connection issues 3540 | * Graceful shutdown procedures 3541 | 3542 | ## Common Customization Points 3543 | 3544 | 1. **Tool Handling** 3545 | * Modify `process_query()` to handle specific tool types 3546 | * Add custom error handling for tool calls 3547 | * Implement tool-specific response formatting 3548 | 3549 | 2. **Response Processing** 3550 | * Customize how tool results are formatted 3551 | * Add response filtering or transformation 3552 | * Implement custom logging 3553 | 3554 | 3. **User Interface** 3555 | * Add a GUI or web interface 3556 | * Implement rich console output 3557 | * Add command history or auto-completion 3558 | 3559 | ## Running the Client 3560 | 3561 | To run your client with any MCP server: 3562 | 3563 | ```bash 3564 | uv run client.py path/to/server.py # python server 3565 | uv run client.py path/to/build/index.js # node server 3566 | ``` 3567 | 3568 | <Note> 3569 | If you're continuing the weather tutorial from the server quickstart, your command might look something like this: `python client.py .../weather/src/weather/server.py` 3570 | </Note> 3571 | 3572 | The client will: 3573 | 3574 | 1. Connect to the specified server 3575 | 2. List available tools 3576 | 3. Start an interactive chat session where you can: 3577 | * Enter queries 3578 | * See tool executions 3579 | * Get responses from Claude 3580 | 3581 | Here's an example of what it should look like if connected to the weather server from the server quickstart: 3582 | 3583 | <Frame> 3584 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/client-claude-cli-python.png" /> 3585 | </Frame> 3586 | 3587 | ## How It Works 3588 | 3589 | When you submit a query: 3590 | 3591 | 1. The client gets the list of available tools from the server 3592 | 2. Your query is sent to Claude along with tool descriptions 3593 | 3. Claude decides which tools (if any) to use 3594 | 4. The client executes any requested tool calls through the server 3595 | 5. Results are sent back to Claude 3596 | 6. Claude provides a natural language response 3597 | 7. The response is displayed to you 3598 | 3599 | ## Best practices 3600 | 3601 | 1. **Error Handling** 3602 | * Always wrap tool calls in try-catch blocks 3603 | * Provide meaningful error messages 3604 | * Gracefully handle connection issues 3605 | 3606 | 2. **Resource Management** 3607 | * Use `AsyncExitStack` for proper cleanup 3608 | * Close connections when done 3609 | * Handle server disconnections 3610 | 3611 | 3. **Security** 3612 | * Store API keys securely in `.env` 3613 | * Validate server responses 3614 | * Be cautious with tool permissions 3615 | 3616 | ## Troubleshooting 3617 | 3618 | ### Server Path Issues 3619 | 3620 | * Double-check the path to your server script is correct 3621 | * Use the absolute path if the relative path isn't working 3622 | * For Windows users, make sure to use forward slashes (/) or escaped backslashes (\\) in the path 3623 | * Verify the server file has the correct extension (.py for Python or .js for Node.js) 3624 | 3625 | Example of correct path usage: 3626 | 3627 | ```bash 3628 | # Relative path 3629 | uv run client.py ./server/weather.py 3630 | 3631 | # Absolute path 3632 | uv run client.py /Users/username/projects/mcp-server/weather.py 3633 | 3634 | # Windows path (either format works) 3635 | uv run client.py C:/projects/mcp-server/weather.py 3636 | uv run client.py C:\\projects\\mcp-server\\weather.py 3637 | ``` 3638 | 3639 | ### Response Timing 3640 | 3641 | * The first response might take up to 30 seconds to return 3642 | * This is normal and happens while: 3643 | * The server initializes 3644 | * Claude processes the query 3645 | * Tools are being executed 3646 | * Subsequent responses are typically faster 3647 | * Don't interrupt the process during this initial waiting period 3648 | 3649 | ### Common Error Messages 3650 | 3651 | If you see: 3652 | 3653 | * `FileNotFoundError`: Check your server path 3654 | * `Connection refused`: Ensure the server is running and the path is correct 3655 | * `Tool execution failed`: Verify the tool's required environment variables are set 3656 | * `Timeout error`: Consider increasing the timeout in your client configuration 3657 | </Tab> 3658 | 3659 | <Tab title="Node"> 3660 | [You can find the complete code for this tutorial here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/mcp-client-typescript) 3661 | 3662 | ## System Requirements 3663 | 3664 | Before starting, ensure your system meets these requirements: 3665 | 3666 | * Mac or Windows computer 3667 | * Node.js 16 or higher installed 3668 | * Latest version of `npm` installed 3669 | * Anthropic API key (Claude) 3670 | 3671 | ## Setting Up Your Environment 3672 | 3673 | First, let's create and set up our project: 3674 | 3675 | <CodeGroup> 3676 | ```bash MacOS/Linux 3677 | # Create project directory 3678 | mkdir mcp-client-typescript 3679 | cd mcp-client-typescript 3680 | 3681 | # Initialize npm project 3682 | npm init -y 3683 | 3684 | # Install dependencies 3685 | npm install @anthropic-ai/sdk @modelcontextprotocol/sdk dotenv 3686 | 3687 | # Install dev dependencies 3688 | npm install -D @types/node typescript 3689 | 3690 | # Create source file 3691 | touch index.ts 3692 | ``` 3693 | 3694 | ```powershell Windows 3695 | # Create project directory 3696 | md mcp-client-typescript 3697 | cd mcp-client-typescript 3698 | 3699 | # Initialize npm project 3700 | npm init -y 3701 | 3702 | # Install dependencies 3703 | npm install @anthropic-ai/sdk @modelcontextprotocol/sdk dotenv 3704 | 3705 | # Install dev dependencies 3706 | npm install -D @types/node typescript 3707 | 3708 | # Create source file 3709 | new-item index.ts 3710 | ``` 3711 | </CodeGroup> 3712 | 3713 | Update your `package.json` to set `type: "module"` and a build script: 3714 | 3715 | ```json package.json 3716 | { 3717 | "type": "module", 3718 | "scripts": { 3719 | "build": "tsc && chmod 755 build/index.js" 3720 | } 3721 | } 3722 | ``` 3723 | 3724 | Create a `tsconfig.json` in the root of your project: 3725 | 3726 | ```json tsconfig.json 3727 | { 3728 | "compilerOptions": { 3729 | "target": "ES2022", 3730 | "module": "Node16", 3731 | "moduleResolution": "Node16", 3732 | "outDir": "./build", 3733 | "rootDir": "./", 3734 | "strict": true, 3735 | "esModuleInterop": true, 3736 | "skipLibCheck": true, 3737 | "forceConsistentCasingInFileNames": true 3738 | }, 3739 | "include": ["index.ts"], 3740 | "exclude": ["node_modules"] 3741 | } 3742 | ``` 3743 | 3744 | ## Setting Up Your API Key 3745 | 3746 | You'll need an Anthropic API key from the [Anthropic Console](https://console.anthropic.com/settings/keys). 3747 | 3748 | Create a `.env` file to store it: 3749 | 3750 | ```bash 3751 | echo "ANTHROPIC_API_KEY=<your key here>" > .env 3752 | ``` 3753 | 3754 | Add `.env` to your `.gitignore`: 3755 | 3756 | ```bash 3757 | echo ".env" >> .gitignore 3758 | ``` 3759 | 3760 | <Warning> 3761 | Make sure you keep your `ANTHROPIC_API_KEY` secure! 3762 | </Warning> 3763 | 3764 | ## Creating the Client 3765 | 3766 | ### Basic Client Structure 3767 | 3768 | First, let's set up our imports and create the basic client class in `index.ts`: 3769 | 3770 | ```typescript 3771 | import { Anthropic } from "@anthropic-ai/sdk"; 3772 | import { 3773 | MessageParam, 3774 | Tool, 3775 | } from "@anthropic-ai/sdk/resources/messages/messages.mjs"; 3776 | import { Client } from "@modelcontextprotocol/sdk/client/index.js"; 3777 | import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js"; 3778 | import readline from "readline/promises"; 3779 | import dotenv from "dotenv"; 3780 | 3781 | dotenv.config(); 3782 | 3783 | const ANTHROPIC_API_KEY = process.env.ANTHROPIC_API_KEY; 3784 | if (!ANTHROPIC_API_KEY) { 3785 | throw new Error("ANTHROPIC_API_KEY is not set"); 3786 | } 3787 | 3788 | class MCPClient { 3789 | private mcp: Client; 3790 | private anthropic: Anthropic; 3791 | private transport: StdioClientTransport | null = null; 3792 | private tools: Tool[] = []; 3793 | 3794 | constructor() { 3795 | this.anthropic = new Anthropic({ 3796 | apiKey: ANTHROPIC_API_KEY, 3797 | }); 3798 | this.mcp = new Client({ name: "mcp-client-cli", version: "1.0.0" }); 3799 | } 3800 | // methods will go here 3801 | } 3802 | ``` 3803 | 3804 | ### Server Connection Management 3805 | 3806 | Next, we'll implement the method to connect to an MCP server: 3807 | 3808 | ```typescript 3809 | async connectToServer(serverScriptPath: string) { 3810 | try { 3811 | const isJs = serverScriptPath.endsWith(".js"); 3812 | const isPy = serverScriptPath.endsWith(".py"); 3813 | if (!isJs && !isPy) { 3814 | throw new Error("Server script must be a .js or .py file"); 3815 | } 3816 | const command = isPy 3817 | ? process.platform === "win32" 3818 | ? "python" 3819 | : "python3" 3820 | : process.execPath; 3821 | 3822 | this.transport = new StdioClientTransport({ 3823 | command, 3824 | args: [serverScriptPath], 3825 | }); 3826 | this.mcp.connect(this.transport); 3827 | 3828 | const toolsResult = await this.mcp.listTools(); 3829 | this.tools = toolsResult.tools.map((tool) => { 3830 | return { 3831 | name: tool.name, 3832 | description: tool.description, 3833 | input_schema: tool.inputSchema, 3834 | }; 3835 | }); 3836 | console.log( 3837 | "Connected to server with tools:", 3838 | this.tools.map(({ name }) => name) 3839 | ); 3840 | } catch (e) { 3841 | console.log("Failed to connect to MCP server: ", e); 3842 | throw e; 3843 | } 3844 | } 3845 | ``` 3846 | 3847 | ### Query Processing Logic 3848 | 3849 | Now let's add the core functionality for processing queries and handling tool calls: 3850 | 3851 | ```typescript 3852 | async processQuery(query: string) { 3853 | const messages: MessageParam[] = [ 3854 | { 3855 | role: "user", 3856 | content: query, 3857 | }, 3858 | ]; 3859 | 3860 | const response = await this.anthropic.messages.create({ 3861 | model: "claude-3-5-sonnet-20241022", 3862 | max_tokens: 1000, 3863 | messages, 3864 | tools: this.tools, 3865 | }); 3866 | 3867 | const finalText = []; 3868 | const toolResults = []; 3869 | 3870 | for (const content of response.content) { 3871 | if (content.type === "text") { 3872 | finalText.push(content.text); 3873 | } else if (content.type === "tool_use") { 3874 | const toolName = content.name; 3875 | const toolArgs = content.input as { [x: string]: unknown } | undefined; 3876 | 3877 | const result = await this.mcp.callTool({ 3878 | name: toolName, 3879 | arguments: toolArgs, 3880 | }); 3881 | toolResults.push(result); 3882 | finalText.push( 3883 | `[Calling tool ${toolName} with args ${JSON.stringify(toolArgs)}]` 3884 | ); 3885 | 3886 | messages.push({ 3887 | role: "user", 3888 | content: result.content as string, 3889 | }); 3890 | 3891 | const response = await this.anthropic.messages.create({ 3892 | model: "claude-3-5-sonnet-20241022", 3893 | max_tokens: 1000, 3894 | messages, 3895 | }); 3896 | 3897 | finalText.push( 3898 | response.content[0].type === "text" ? response.content[0].text : "" 3899 | ); 3900 | } 3901 | } 3902 | 3903 | return finalText.join("\n"); 3904 | } 3905 | ``` 3906 | 3907 | ### Interactive Chat Interface 3908 | 3909 | Now we'll add the chat loop and cleanup functionality: 3910 | 3911 | ```typescript 3912 | async chatLoop() { 3913 | const rl = readline.createInterface({ 3914 | input: process.stdin, 3915 | output: process.stdout, 3916 | }); 3917 | 3918 | try { 3919 | console.log("\nMCP Client Started!"); 3920 | console.log("Type your queries or 'quit' to exit."); 3921 | 3922 | while (true) { 3923 | const message = await rl.question("\nQuery: "); 3924 | if (message.toLowerCase() === "quit") { 3925 | break; 3926 | } 3927 | const response = await this.processQuery(message); 3928 | console.log("\n" + response); 3929 | } 3930 | } finally { 3931 | rl.close(); 3932 | } 3933 | } 3934 | 3935 | async cleanup() { 3936 | await this.mcp.close(); 3937 | } 3938 | ``` 3939 | 3940 | ### Main Entry Point 3941 | 3942 | Finally, we'll add the main execution logic: 3943 | 3944 | ```typescript 3945 | async function main() { 3946 | if (process.argv.length < 3) { 3947 | console.log("Usage: node index.ts <path_to_server_script>"); 3948 | return; 3949 | } 3950 | const mcpClient = new MCPClient(); 3951 | try { 3952 | await mcpClient.connectToServer(process.argv[2]); 3953 | await mcpClient.chatLoop(); 3954 | } finally { 3955 | await mcpClient.cleanup(); 3956 | process.exit(0); 3957 | } 3958 | } 3959 | 3960 | main(); 3961 | ``` 3962 | 3963 | ## Running the Client 3964 | 3965 | To run your client with any MCP server: 3966 | 3967 | ```bash 3968 | # Build TypeScript 3969 | npm run build 3970 | 3971 | # Run the client 3972 | node build/index.js path/to/server.py # python server 3973 | node build/index.js path/to/build/index.js # node server 3974 | ``` 3975 | 3976 | <Note> 3977 | If you're continuing the weather tutorial from the server quickstart, your command might look something like this: `node build/index.js .../quickstart-resources/weather-server-typescript/build/index.js` 3978 | </Note> 3979 | 3980 | **The client will:** 3981 | 3982 | 1. Connect to the specified server 3983 | 2. List available tools 3984 | 3. Start an interactive chat session where you can: 3985 | * Enter queries 3986 | * See tool executions 3987 | * Get responses from Claude 3988 | 3989 | ## How It Works 3990 | 3991 | When you submit a query: 3992 | 3993 | 1. The client gets the list of available tools from the server 3994 | 2. Your query is sent to Claude along with tool descriptions 3995 | 3. Claude decides which tools (if any) to use 3996 | 4. The client executes any requested tool calls through the server 3997 | 5. Results are sent back to Claude 3998 | 6. Claude provides a natural language response 3999 | 7. The response is displayed to you 4000 | 4001 | ## Best practices 4002 | 4003 | 1. **Error Handling** 4004 | * Use TypeScript's type system for better error detection 4005 | * Wrap tool calls in try-catch blocks 4006 | * Provide meaningful error messages 4007 | * Gracefully handle connection issues 4008 | 4009 | 2. **Security** 4010 | * Store API keys securely in `.env` 4011 | * Validate server responses 4012 | * Be cautious with tool permissions 4013 | 4014 | ## Troubleshooting 4015 | 4016 | ### Server Path Issues 4017 | 4018 | * Double-check the path to your server script is correct 4019 | * Use the absolute path if the relative path isn't working 4020 | * For Windows users, make sure to use forward slashes (/) or escaped backslashes (\\) in the path 4021 | * Verify the server file has the correct extension (.js for Node.js or .py for Python) 4022 | 4023 | Example of correct path usage: 4024 | 4025 | ```bash 4026 | # Relative path 4027 | node build/index.js ./server/build/index.js 4028 | 4029 | # Absolute path 4030 | node build/index.js /Users/username/projects/mcp-server/build/index.js 4031 | 4032 | # Windows path (either format works) 4033 | node build/index.js C:/projects/mcp-server/build/index.js 4034 | node build/index.js C:\\projects\\mcp-server\\build\\index.js 4035 | ``` 4036 | 4037 | ### Response Timing 4038 | 4039 | * The first response might take up to 30 seconds to return 4040 | * This is normal and happens while: 4041 | * The server initializes 4042 | * Claude processes the query 4043 | * Tools are being executed 4044 | * Subsequent responses are typically faster 4045 | * Don't interrupt the process during this initial waiting period 4046 | 4047 | ### Common Error Messages 4048 | 4049 | If you see: 4050 | 4051 | * `Error: Cannot find module`: Check your build folder and ensure TypeScript compilation succeeded 4052 | * `Connection refused`: Ensure the server is running and the path is correct 4053 | * `Tool execution failed`: Verify the tool's required environment variables are set 4054 | * `ANTHROPIC_API_KEY is not set`: Check your .env file and environment variables 4055 | * `TypeError`: Ensure you're using the correct types for tool arguments 4056 | </Tab> 4057 | 4058 | <Tab title="Java"> 4059 | <Note> 4060 | This is a quickstart demo based on Spring AI MCP auto-configuration and boot starters. 4061 | To learn how to create sync and async MCP Clients manually, consult the [Java SDK Client](/sdk/java/mcp-client) documentation 4062 | </Note> 4063 | 4064 | This example demonstrates how to build an interactive chatbot that combines Spring AI's Model Context Protocol (MCP) with the [Brave Search MCP Server](https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search). The application creates a conversational interface powered by Anthropic's Claude AI model that can perform internet searches through Brave Search, enabling natural language interactions with real-time web data. 4065 | [You can find the complete code for this tutorial here.](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/web-search/brave-chatbot) 4066 | 4067 | ## System Requirements 4068 | 4069 | Before starting, ensure your system meets these requirements: 4070 | 4071 | * Java 17 or higher 4072 | * Maven 3.6+ 4073 | * npx package manager 4074 | * Anthropic API key (Claude) 4075 | * Brave Search API key 4076 | 4077 | ## Setting Up Your Environment 4078 | 4079 | 1. Install npx (Node Package eXecute): 4080 | First, make sure to install [npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) 4081 | and then run: 4082 | ```bash 4083 | npm install -g npx 4084 | ``` 4085 | 4086 | 2. Clone the repository: 4087 | ```bash 4088 | git clone https://github.com/spring-projects/spring-ai-examples.git 4089 | cd model-context-protocol/brave-chatbot 4090 | ``` 4091 | 4092 | 3. Set up your API keys: 4093 | ```bash 4094 | export ANTHROPIC_API_KEY='your-anthropic-api-key-here' 4095 | export BRAVE_API_KEY='your-brave-api-key-here' 4096 | ``` 4097 | 4098 | 4. Build the application: 4099 | ```bash 4100 | ./mvnw clean install 4101 | ``` 4102 | 4103 | 5. Run the application using Maven: 4104 | ```bash 4105 | ./mvnw spring-boot:run 4106 | ``` 4107 | 4108 | <Warning> 4109 | Make sure you keep your `ANTHROPIC_API_KEY` and `BRAVE_API_KEY` keys secure! 4110 | </Warning> 4111 | 4112 | ## How it Works 4113 | 4114 | The application integrates Spring AI with the Brave Search MCP server through several components: 4115 | 4116 | ### MCP Client Configuration 4117 | 4118 | 1. Required dependencies in pom.xml: 4119 | 4120 | ```xml 4121 | <dependency> 4122 | <groupId>org.springframework.ai</groupId> 4123 | <artifactId>spring-ai-mcp-client-spring-boot-starter</artifactId> 4124 | </dependency> 4125 | <dependency> 4126 | <groupId>org.springframework.ai</groupId> 4127 | <artifactId>spring-ai-anthropic-spring-boot-starter</artifactId> 4128 | </dependency> 4129 | ``` 4130 | 4131 | 2. Application properties (application.yml): 4132 | 4133 | ```yml 4134 | spring: 4135 | ai: 4136 | mcp: 4137 | client: 4138 | enabled: true 4139 | name: brave-search-client 4140 | version: 1.0.0 4141 | type: SYNC 4142 | request-timeout: 20s 4143 | stdio: 4144 | root-change-notification: true 4145 | servers-configuration: classpath:/mcp-servers-config.json 4146 | anthropic: 4147 | api-key: ${ANTHROPIC_API_KEY} 4148 | ``` 4149 | 4150 | This activates the `spring-ai-mcp-client-spring-boot-starter` to create one or more `McpClient`s based on the provided server configuration. 4151 | 4152 | 3. MCP Server Configuration (`mcp-servers-config.json`): 4153 | 4154 | ```json 4155 | { 4156 | "mcpServers": { 4157 | "brave-search": { 4158 | "command": "npx", 4159 | "args": [ 4160 | "-y", 4161 | "@modelcontextprotocol/server-brave-search" 4162 | ], 4163 | "env": { 4164 | "BRAVE_API_KEY": "<PUT YOUR BRAVE API KEY>" 4165 | } 4166 | } 4167 | } 4168 | } 4169 | ``` 4170 | 4171 | ### Chat Implementation 4172 | 4173 | The chatbot is implemented using Spring AI's ChatClient with MCP tool integration: 4174 | 4175 | ```java 4176 | var chatClient = chatClientBuilder 4177 | .defaultSystem("You are useful assistant, expert in AI and Java.") 4178 | .defaultTools((Object[]) mcpToolAdapter.toolCallbacks()) 4179 | .defaultAdvisors(new MessageChatMemoryAdvisor(new InMemoryChatMemory())) 4180 | .build(); 4181 | ``` 4182 | 4183 | Key features: 4184 | 4185 | * Uses Claude AI model for natural language understanding 4186 | * Integrates Brave Search through MCP for real-time web search capabilities 4187 | * Maintains conversation memory using InMemoryChatMemory 4188 | * Runs as an interactive command-line application 4189 | 4190 | ### Build and run 4191 | 4192 | ```bash 4193 | ./mvnw clean install 4194 | java -jar ./target/ai-mcp-brave-chatbot-0.0.1-SNAPSHOT.jar 4195 | ``` 4196 | 4197 | or 4198 | 4199 | ```bash 4200 | ./mvnw spring-boot:run 4201 | ``` 4202 | 4203 | The application will start an interactive chat session where you can ask questions. The chatbot will use Brave Search when it needs to find information from the internet to answer your queries. 4204 | 4205 | The chatbot can: 4206 | 4207 | * Answer questions using its built-in knowledge 4208 | * Perform web searches when needed using Brave Search 4209 | * Remember context from previous messages in the conversation 4210 | * Combine information from multiple sources to provide comprehensive answers 4211 | 4212 | ### Advanced Configuration 4213 | 4214 | The MCP client supports additional configuration options: 4215 | 4216 | * Client customization through `McpSyncClientCustomizer` or `McpAsyncClientCustomizer` 4217 | * Multiple clients with multiple transport types: `STDIO` and `SSE` (Server-Sent Events) 4218 | * Integration with Spring AI's tool execution framework 4219 | * Automatic client initialization and lifecycle management 4220 | 4221 | For WebFlux-based applications, you can use the WebFlux starter instead: 4222 | 4223 | ```xml 4224 | <dependency> 4225 | <groupId>org.springframework.ai</groupId> 4226 | <artifactId>spring-ai-mcp-client-webflux-spring-boot-starter</artifactId> 4227 | </dependency> 4228 | ``` 4229 | 4230 | This provides similar functionality but uses a WebFlux-based SSE transport implementation, recommended for production deployments. 4231 | </Tab> 4232 | </Tabs> 4233 | 4234 | ## Next steps 4235 | 4236 | <CardGroup cols={2}> 4237 | <Card title="Example servers" icon="grid" href="/examples"> 4238 | Check out our gallery of official MCP servers and implementations 4239 | </Card> 4240 | 4241 | <Card title="Clients" icon="cubes" href="/clients"> 4242 | View the list of clients that support MCP integrations 4243 | </Card> 4244 | 4245 | <Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms"> 4246 | Learn how to use LLMs like Claude to speed up your MCP development 4247 | </Card> 4248 | 4249 | <Card title="Core architecture" icon="sitemap" href="/docs/concepts/architecture"> 4250 | Understand how MCP connects clients, servers, and LLMs 4251 | </Card> 4252 | </CardGroup> 4253 | 4254 | 4255 | # For Server Developers 4256 | Source: https://modelcontextprotocol.io/quickstart/server 4257 | 4258 | Get started building your own server to use in Claude for Desktop and other clients. 4259 | 4260 | In this tutorial, we'll build a simple MCP weather server and connect it to a host, Claude for Desktop. We'll start with a basic setup, and then progress to more complex use cases. 4261 | 4262 | ### What we'll be building 4263 | 4264 | Many LLMs (including Claude) do not currently have the ability to fetch the forecast and severe weather alerts. Let's use MCP to solve that! 4265 | 4266 | We'll build a server that exposes two tools: `get-alerts` and `get-forecast`. Then we'll connect the server to an MCP host (in this case, Claude for Desktop): 4267 | 4268 | <Frame> 4269 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/weather-alerts.png" /> 4270 | </Frame> 4271 | 4272 | <Frame> 4273 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/current-weather.png" /> 4274 | </Frame> 4275 | 4276 | <Note> 4277 | Servers can connect to any client. We've chosen Claude for Desktop here for simplicity, but we also have guides on [building your own client](/quickstart/client) as well as a [list of other clients here](/clients). 4278 | </Note> 4279 | 4280 | <Accordion title="Why Claude for Desktop and not Claude.ai?"> 4281 | Because servers are locally run, MCP currently only supports desktop hosts. Remote hosts are in active development. 4282 | </Accordion> 4283 | 4284 | ### Core MCP Concepts 4285 | 4286 | MCP servers can provide three main types of capabilities: 4287 | 4288 | 1. **Resources**: File-like data that can be read by clients (like API responses or file contents) 4289 | 2. **Tools**: Functions that can be called by the LLM (with user approval) 4290 | 3. **Prompts**: Pre-written templates that help users accomplish specific tasks 4291 | 4292 | This tutorial will primarily focus on tools. 4293 | 4294 | <Tabs> 4295 | <Tab title="Python"> 4296 | Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/weather-server-python) 4297 | 4298 | ### Prerequisite knowledge 4299 | 4300 | This quickstart assumes you have familiarity with: 4301 | 4302 | * Python 4303 | * LLMs like Claude 4304 | 4305 | ### System requirements 4306 | 4307 | * Python 3.10 or higher installed. 4308 | * You must use the Python MCP SDK 1.2.0 or higher. 4309 | 4310 | ### Set up your environment 4311 | 4312 | First, let's install `uv` and set up our Python project and environment: 4313 | 4314 | <CodeGroup> 4315 | ```bash MacOS/Linux 4316 | curl -LsSf https://astral.sh/uv/install.sh | sh 4317 | ``` 4318 | 4319 | ```powershell Windows 4320 | powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" 4321 | ``` 4322 | </CodeGroup> 4323 | 4324 | Make sure to restart your terminal afterwards to ensure that the `uv` command gets picked up. 4325 | 4326 | Now, let's create and set up our project: 4327 | 4328 | <CodeGroup> 4329 | ```bash MacOS/Linux 4330 | # Create a new directory for our project 4331 | uv init weather 4332 | cd weather 4333 | 4334 | # Create virtual environment and activate it 4335 | uv venv 4336 | source .venv/bin/activate 4337 | 4338 | # Install dependencies 4339 | uv add "mcp[cli]" httpx 4340 | 4341 | # Create our server file 4342 | touch weather.py 4343 | ``` 4344 | 4345 | ```powershell Windows 4346 | # Create a new directory for our project 4347 | uv init weather 4348 | cd weather 4349 | 4350 | # Create virtual environment and activate it 4351 | uv venv 4352 | .venv\Scripts\activate 4353 | 4354 | # Install dependencies 4355 | uv add mcp[cli] httpx 4356 | 4357 | # Create our server file 4358 | new-item weather.py 4359 | ``` 4360 | </CodeGroup> 4361 | 4362 | Now let's dive into building your server. 4363 | 4364 | ## Building your server 4365 | 4366 | ### Importing packages and setting up the instance 4367 | 4368 | Add these to the top of your `weather.py`: 4369 | 4370 | ```python 4371 | from typing import Any 4372 | import httpx 4373 | from mcp.server.fastmcp import FastMCP 4374 | 4375 | # Initialize FastMCP server 4376 | mcp = FastMCP("weather") 4377 | 4378 | # Constants 4379 | NWS_API_BASE = "https://api.weather.gov" 4380 | USER_AGENT = "weather-app/1.0" 4381 | ``` 4382 | 4383 | The FastMCP class uses Python type hints and docstrings to automatically generate tool definitions, making it easy to create and maintain MCP tools. 4384 | 4385 | ### Helper functions 4386 | 4387 | Next, let's add our helper functions for querying and formatting the data from the National Weather Service API: 4388 | 4389 | ```python 4390 | async def make_nws_request(url: str) -> dict[str, Any] | None: 4391 | """Make a request to the NWS API with proper error handling.""" 4392 | headers = { 4393 | "User-Agent": USER_AGENT, 4394 | "Accept": "application/geo+json" 4395 | } 4396 | async with httpx.AsyncClient() as client: 4397 | try: 4398 | response = await client.get(url, headers=headers, timeout=30.0) 4399 | response.raise_for_status() 4400 | return response.json() 4401 | except Exception: 4402 | return None 4403 | 4404 | def format_alert(feature: dict) -> str: 4405 | """Format an alert feature into a readable string.""" 4406 | props = feature["properties"] 4407 | return f""" 4408 | Event: {props.get('event', 'Unknown')} 4409 | Area: {props.get('areaDesc', 'Unknown')} 4410 | Severity: {props.get('severity', 'Unknown')} 4411 | Description: {props.get('description', 'No description available')} 4412 | Instructions: {props.get('instruction', 'No specific instructions provided')} 4413 | """ 4414 | ``` 4415 | 4416 | ### Implementing tool execution 4417 | 4418 | The tool execution handler is responsible for actually executing the logic of each tool. Let's add it: 4419 | 4420 | ```python 4421 | @mcp.tool() 4422 | async def get_alerts(state: str) -> str: 4423 | """Get weather alerts for a US state. 4424 | 4425 | Args: 4426 | state: Two-letter US state code (e.g. CA, NY) 4427 | """ 4428 | url = f"{NWS_API_BASE}/alerts/active/area/{state}" 4429 | data = await make_nws_request(url) 4430 | 4431 | if not data or "features" not in data: 4432 | return "Unable to fetch alerts or no alerts found." 4433 | 4434 | if not data["features"]: 4435 | return "No active alerts for this state." 4436 | 4437 | alerts = [format_alert(feature) for feature in data["features"]] 4438 | return "\n---\n".join(alerts) 4439 | 4440 | @mcp.tool() 4441 | async def get_forecast(latitude: float, longitude: float) -> str: 4442 | """Get weather forecast for a location. 4443 | 4444 | Args: 4445 | latitude: Latitude of the location 4446 | longitude: Longitude of the location 4447 | """ 4448 | # First get the forecast grid endpoint 4449 | points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}" 4450 | points_data = await make_nws_request(points_url) 4451 | 4452 | if not points_data: 4453 | return "Unable to fetch forecast data for this location." 4454 | 4455 | # Get the forecast URL from the points response 4456 | forecast_url = points_data["properties"]["forecast"] 4457 | forecast_data = await make_nws_request(forecast_url) 4458 | 4459 | if not forecast_data: 4460 | return "Unable to fetch detailed forecast." 4461 | 4462 | # Format the periods into a readable forecast 4463 | periods = forecast_data["properties"]["periods"] 4464 | forecasts = [] 4465 | for period in periods[:5]: # Only show next 5 periods 4466 | forecast = f""" 4467 | {period['name']}: 4468 | Temperature: {period['temperature']}°{period['temperatureUnit']} 4469 | Wind: {period['windSpeed']} {period['windDirection']} 4470 | Forecast: {period['detailedForecast']} 4471 | """ 4472 | forecasts.append(forecast) 4473 | 4474 | return "\n---\n".join(forecasts) 4475 | ``` 4476 | 4477 | ### Running the server 4478 | 4479 | Finally, let's initialize and run the server: 4480 | 4481 | ```python 4482 | if __name__ == "__main__": 4483 | # Initialize and run the server 4484 | mcp.run(transport='stdio') 4485 | ``` 4486 | 4487 | Your server is complete! Run `uv run weather.py` to confirm that everything's working. 4488 | 4489 | Let's now test your server from an existing MCP host, Claude for Desktop. 4490 | 4491 | ## Testing your server with Claude for Desktop 4492 | 4493 | <Note> 4494 | Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built. 4495 | </Note> 4496 | 4497 | First, make sure you have Claude for Desktop installed. [You can install the latest version 4498 | here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.** 4499 | 4500 | We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor. Make sure to create the file if it doesn't exist. 4501 | 4502 | For example, if you have [VS Code](https://code.visualstudio.com/) installed: 4503 | 4504 | <Tabs> 4505 | <Tab title="MacOS/Linux"> 4506 | ```bash 4507 | code ~/Library/Application\ Support/Claude/claude_desktop_config.json 4508 | ``` 4509 | </Tab> 4510 | 4511 | <Tab title="Windows"> 4512 | ```powershell 4513 | code $env:AppData\Claude\claude_desktop_config.json 4514 | ``` 4515 | </Tab> 4516 | </Tabs> 4517 | 4518 | You'll then add your servers in the `mcpServers` key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured. 4519 | 4520 | In this case, we'll add our single weather server like so: 4521 | 4522 | <Tabs> 4523 | <Tab title="MacOS/Linux"> 4524 | ```json Python 4525 | { 4526 | "mcpServers": { 4527 | "weather": { 4528 | "command": "uv", 4529 | "args": [ 4530 | "--directory", 4531 | "/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather", 4532 | "run", 4533 | "weather.py" 4534 | ] 4535 | } 4536 | } 4537 | } 4538 | ``` 4539 | </Tab> 4540 | 4541 | <Tab title="Windows"> 4542 | ```json Python 4543 | { 4544 | "mcpServers": { 4545 | "weather": { 4546 | "command": "uv", 4547 | "args": [ 4548 | "--directory", 4549 | "C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather", 4550 | "run", 4551 | "weather.py" 4552 | ] 4553 | } 4554 | } 4555 | } 4556 | ``` 4557 | </Tab> 4558 | </Tabs> 4559 | 4560 | <Warning> 4561 | You may need to put the full path to the `uv` executable in the `command` field. You can get this by running `which uv` on MacOS/Linux or `where uv` on Windows. 4562 | </Warning> 4563 | 4564 | <Note> 4565 | Make sure you pass in the absolute path to your server. 4566 | </Note> 4567 | 4568 | This tells Claude for Desktop: 4569 | 4570 | 1. There's an MCP server named "weather" 4571 | 2. To launch it by running `uv --directory /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather run weather.py` 4572 | 4573 | Save the file, and restart **Claude for Desktop**. 4574 | </Tab> 4575 | 4576 | <Tab title="Node"> 4577 | Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/weather-server-typescript) 4578 | 4579 | ### Prerequisite knowledge 4580 | 4581 | This quickstart assumes you have familiarity with: 4582 | 4583 | * TypeScript 4584 | * LLMs like Claude 4585 | 4586 | ### System requirements 4587 | 4588 | For TypeScript, make sure you have the latest version of Node installed. 4589 | 4590 | ### Set up your environment 4591 | 4592 | First, let's install Node.js and npm if you haven't already. You can download them from [nodejs.org](https://nodejs.org/). 4593 | Verify your Node.js installation: 4594 | 4595 | ```bash 4596 | node --version 4597 | npm --version 4598 | ``` 4599 | 4600 | For this tutorial, you'll need Node.js version 16 or higher. 4601 | 4602 | Now, let's create and set up our project: 4603 | 4604 | <CodeGroup> 4605 | ```bash MacOS/Linux 4606 | # Create a new directory for our project 4607 | mkdir weather 4608 | cd weather 4609 | 4610 | # Initialize a new npm project 4611 | npm init -y 4612 | 4613 | # Install dependencies 4614 | npm install @modelcontextprotocol/sdk zod 4615 | npm install -D @types/node typescript 4616 | 4617 | # Create our files 4618 | mkdir src 4619 | touch src/index.ts 4620 | ``` 4621 | 4622 | ```powershell Windows 4623 | # Create a new directory for our project 4624 | md weather 4625 | cd weather 4626 | 4627 | # Initialize a new npm project 4628 | npm init -y 4629 | 4630 | # Install dependencies 4631 | npm install @modelcontextprotocol/sdk zod 4632 | npm install -D @types/node typescript 4633 | 4634 | # Create our files 4635 | md src 4636 | new-item src\index.ts 4637 | ``` 4638 | </CodeGroup> 4639 | 4640 | Update your package.json to add type: "module" and a build script: 4641 | 4642 | ```json package.json 4643 | { 4644 | "type": "module", 4645 | "bin": { 4646 | "weather": "./build/index.js" 4647 | }, 4648 | "scripts": { 4649 | "build": "tsc && chmod 755 build/index.js" 4650 | }, 4651 | "files": [ 4652 | "build" 4653 | ], 4654 | } 4655 | ``` 4656 | 4657 | Create a `tsconfig.json` in the root of your project: 4658 | 4659 | ```json tsconfig.json 4660 | { 4661 | "compilerOptions": { 4662 | "target": "ES2022", 4663 | "module": "Node16", 4664 | "moduleResolution": "Node16", 4665 | "outDir": "./build", 4666 | "rootDir": "./src", 4667 | "strict": true, 4668 | "esModuleInterop": true, 4669 | "skipLibCheck": true, 4670 | "forceConsistentCasingInFileNames": true 4671 | }, 4672 | "include": ["src/**/*"], 4673 | "exclude": ["node_modules"] 4674 | } 4675 | ``` 4676 | 4677 | Now let's dive into building your server. 4678 | 4679 | ## Building your server 4680 | 4681 | ### Importing packages and setting up the instance 4682 | 4683 | Add these to the top of your `src/index.ts`: 4684 | 4685 | ```typescript 4686 | import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js"; 4687 | import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; 4688 | import { z } from "zod"; 4689 | 4690 | const NWS_API_BASE = "https://api.weather.gov"; 4691 | const USER_AGENT = "weather-app/1.0"; 4692 | 4693 | // Create server instance 4694 | const server = new McpServer({ 4695 | name: "weather", 4696 | version: "1.0.0", 4697 | }); 4698 | ``` 4699 | 4700 | ### Helper functions 4701 | 4702 | Next, let's add our helper functions for querying and formatting the data from the National Weather Service API: 4703 | 4704 | ```typescript 4705 | // Helper function for making NWS API requests 4706 | async function makeNWSRequest<T>(url: string): Promise<T | null> { 4707 | const headers = { 4708 | "User-Agent": USER_AGENT, 4709 | Accept: "application/geo+json", 4710 | }; 4711 | 4712 | try { 4713 | const response = await fetch(url, { headers }); 4714 | if (!response.ok) { 4715 | throw new Error(`HTTP error! status: ${response.status}`); 4716 | } 4717 | return (await response.json()) as T; 4718 | } catch (error) { 4719 | console.error("Error making NWS request:", error); 4720 | return null; 4721 | } 4722 | } 4723 | 4724 | interface AlertFeature { 4725 | properties: { 4726 | event?: string; 4727 | areaDesc?: string; 4728 | severity?: string; 4729 | status?: string; 4730 | headline?: string; 4731 | }; 4732 | } 4733 | 4734 | // Format alert data 4735 | function formatAlert(feature: AlertFeature): string { 4736 | const props = feature.properties; 4737 | return [ 4738 | `Event: ${props.event || "Unknown"}`, 4739 | `Area: ${props.areaDesc || "Unknown"}`, 4740 | `Severity: ${props.severity || "Unknown"}`, 4741 | `Status: ${props.status || "Unknown"}`, 4742 | `Headline: ${props.headline || "No headline"}`, 4743 | "---", 4744 | ].join("\n"); 4745 | } 4746 | 4747 | interface ForecastPeriod { 4748 | name?: string; 4749 | temperature?: number; 4750 | temperatureUnit?: string; 4751 | windSpeed?: string; 4752 | windDirection?: string; 4753 | shortForecast?: string; 4754 | } 4755 | 4756 | interface AlertsResponse { 4757 | features: AlertFeature[]; 4758 | } 4759 | 4760 | interface PointsResponse { 4761 | properties: { 4762 | forecast?: string; 4763 | }; 4764 | } 4765 | 4766 | interface ForecastResponse { 4767 | properties: { 4768 | periods: ForecastPeriod[]; 4769 | }; 4770 | } 4771 | ``` 4772 | 4773 | ### Implementing tool execution 4774 | 4775 | The tool execution handler is responsible for actually executing the logic of each tool. Let's add it: 4776 | 4777 | ```typescript 4778 | // Register weather tools 4779 | server.tool( 4780 | "get-alerts", 4781 | "Get weather alerts for a state", 4782 | { 4783 | state: z.string().length(2).describe("Two-letter state code (e.g. CA, NY)"), 4784 | }, 4785 | async ({ state }) => { 4786 | const stateCode = state.toUpperCase(); 4787 | const alertsUrl = `${NWS_API_BASE}/alerts?area=${stateCode}`; 4788 | const alertsData = await makeNWSRequest<AlertsResponse>(alertsUrl); 4789 | 4790 | if (!alertsData) { 4791 | return { 4792 | content: [ 4793 | { 4794 | type: "text", 4795 | text: "Failed to retrieve alerts data", 4796 | }, 4797 | ], 4798 | }; 4799 | } 4800 | 4801 | const features = alertsData.features || []; 4802 | if (features.length === 0) { 4803 | return { 4804 | content: [ 4805 | { 4806 | type: "text", 4807 | text: `No active alerts for ${stateCode}`, 4808 | }, 4809 | ], 4810 | }; 4811 | } 4812 | 4813 | const formattedAlerts = features.map(formatAlert); 4814 | const alertsText = `Active alerts for ${stateCode}:\n\n${formattedAlerts.join("\n")}`; 4815 | 4816 | return { 4817 | content: [ 4818 | { 4819 | type: "text", 4820 | text: alertsText, 4821 | }, 4822 | ], 4823 | }; 4824 | }, 4825 | ); 4826 | 4827 | server.tool( 4828 | "get-forecast", 4829 | "Get weather forecast for a location", 4830 | { 4831 | latitude: z.number().min(-90).max(90).describe("Latitude of the location"), 4832 | longitude: z.number().min(-180).max(180).describe("Longitude of the location"), 4833 | }, 4834 | async ({ latitude, longitude }) => { 4835 | // Get grid point data 4836 | const pointsUrl = `${NWS_API_BASE}/points/${latitude.toFixed(4)},${longitude.toFixed(4)}`; 4837 | const pointsData = await makeNWSRequest<PointsResponse>(pointsUrl); 4838 | 4839 | if (!pointsData) { 4840 | return { 4841 | content: [ 4842 | { 4843 | type: "text", 4844 | text: `Failed to retrieve grid point data for coordinates: ${latitude}, ${longitude}. This location may not be supported by the NWS API (only US locations are supported).`, 4845 | }, 4846 | ], 4847 | }; 4848 | } 4849 | 4850 | const forecastUrl = pointsData.properties?.forecast; 4851 | if (!forecastUrl) { 4852 | return { 4853 | content: [ 4854 | { 4855 | type: "text", 4856 | text: "Failed to get forecast URL from grid point data", 4857 | }, 4858 | ], 4859 | }; 4860 | } 4861 | 4862 | // Get forecast data 4863 | const forecastData = await makeNWSRequest<ForecastResponse>(forecastUrl); 4864 | if (!forecastData) { 4865 | return { 4866 | content: [ 4867 | { 4868 | type: "text", 4869 | text: "Failed to retrieve forecast data", 4870 | }, 4871 | ], 4872 | }; 4873 | } 4874 | 4875 | const periods = forecastData.properties?.periods || []; 4876 | if (periods.length === 0) { 4877 | return { 4878 | content: [ 4879 | { 4880 | type: "text", 4881 | text: "No forecast periods available", 4882 | }, 4883 | ], 4884 | }; 4885 | } 4886 | 4887 | // Format forecast periods 4888 | const formattedForecast = periods.map((period: ForecastPeriod) => 4889 | [ 4890 | `${period.name || "Unknown"}:`, 4891 | `Temperature: ${period.temperature || "Unknown"}°${period.temperatureUnit || "F"}`, 4892 | `Wind: ${period.windSpeed || "Unknown"} ${period.windDirection || ""}`, 4893 | `${period.shortForecast || "No forecast available"}`, 4894 | "---", 4895 | ].join("\n"), 4896 | ); 4897 | 4898 | const forecastText = `Forecast for ${latitude}, ${longitude}:\n\n${formattedForecast.join("\n")}`; 4899 | 4900 | return { 4901 | content: [ 4902 | { 4903 | type: "text", 4904 | text: forecastText, 4905 | }, 4906 | ], 4907 | }; 4908 | }, 4909 | ); 4910 | ``` 4911 | 4912 | ### Running the server 4913 | 4914 | Finally, implement the main function to run the server: 4915 | 4916 | ```typescript 4917 | async function main() { 4918 | const transport = new StdioServerTransport(); 4919 | await server.connect(transport); 4920 | console.error("Weather MCP Server running on stdio"); 4921 | } 4922 | 4923 | main().catch((error) => { 4924 | console.error("Fatal error in main():", error); 4925 | process.exit(1); 4926 | }); 4927 | ``` 4928 | 4929 | Make sure to run `npm run build` to build your server! This is a very important step in getting your server to connect. 4930 | 4931 | Let's now test your server from an existing MCP host, Claude for Desktop. 4932 | 4933 | ## Testing your server with Claude for Desktop 4934 | 4935 | <Note> 4936 | Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built. 4937 | </Note> 4938 | 4939 | First, make sure you have Claude for Desktop installed. [You can install the latest version 4940 | here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.** 4941 | 4942 | We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor. Make sure to create the file if it doesn't exist. 4943 | 4944 | For example, if you have [VS Code](https://code.visualstudio.com/) installed: 4945 | 4946 | <Tabs> 4947 | <Tab title="MacOS/Linux"> 4948 | ```bash 4949 | code ~/Library/Application\ Support/Claude/claude_desktop_config.json 4950 | ``` 4951 | </Tab> 4952 | 4953 | <Tab title="Windows"> 4954 | ```powershell 4955 | code $env:AppData\Claude\claude_desktop_config.json 4956 | ``` 4957 | </Tab> 4958 | </Tabs> 4959 | 4960 | You'll then add your servers in the `mcpServers` key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured. 4961 | 4962 | In this case, we'll add our single weather server like so: 4963 | 4964 | <Tabs> 4965 | <Tab title="MacOS/Linux"> 4966 | <CodeGroup> 4967 | ```json Node 4968 | { 4969 | "mcpServers": { 4970 | "weather": { 4971 | "command": "node", 4972 | "args": [ 4973 | "/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js" 4974 | ] 4975 | } 4976 | } 4977 | } 4978 | ``` 4979 | </CodeGroup> 4980 | </Tab> 4981 | 4982 | <Tab title="Windows"> 4983 | <CodeGroup> 4984 | ```json Node 4985 | { 4986 | "mcpServers": { 4987 | "weather": { 4988 | "command": "node", 4989 | "args": [ 4990 | "C:\\PATH\\TO\\PARENT\\FOLDER\\weather\\build\\index.js" 4991 | ] 4992 | } 4993 | } 4994 | } 4995 | ``` 4996 | </CodeGroup> 4997 | </Tab> 4998 | </Tabs> 4999 | 5000 | This tells Claude for Desktop: 5001 | 5002 | 1. There's an MCP server named "weather" 5003 | 2. Launch it by running `node /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js` 5004 | 5005 | Save the file, and restart **Claude for Desktop**. 5006 | </Tab> 5007 | 5008 | <Tab title="Java"> 5009 | <Note> 5010 | This is a quickstart demo based on Spring AI MCP auto-configuration and boot starters. 5011 | To learn how to create sync and async MCP Servers, manually, consult the [Java SDK Server](/sdk/java/mcp-server) documentation. 5012 | </Note> 5013 | 5014 | Let's get started with building our weather server! 5015 | [You can find the complete code for what we'll be building here.](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/weather/starter-stdio-server) 5016 | 5017 | For more information, see the [MCP Server Boot Starter](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-starter-docs.html) reference documentation. 5018 | For manual MCP Server implementation, refer to the [MCP Server Java SDK documentation](/sdk/java/mcp-server). 5019 | 5020 | ### System requirements 5021 | 5022 | * Java 17 or higher installed. 5023 | * [Spring Boot 3.3.x](https://docs.spring.io/spring-boot/installing.html) or higher 5024 | 5025 | ### Set up your environment 5026 | 5027 | Use the [Spring Initizer](https://start.spring.io/) to bootstrat the project. 5028 | 5029 | You will need to add the following dependencies: 5030 | 5031 | <Tabs> 5032 | <Tab title="Maven"> 5033 | ```xml 5034 | <dependencies> 5035 | <dependency> 5036 | <groupId>org.springframework.ai</groupId> 5037 | <artifactId>spring-ai-mcp-server-spring-boot-starter</artifactId> 5038 | </dependency> 5039 | 5040 | <dependency> 5041 | <groupId>org.springframework</groupId> 5042 | <artifactId>spring-web</artifactId> 5043 | </dependency> 5044 | </dependencies> 5045 | ``` 5046 | </Tab> 5047 | 5048 | <Tab title="Gradle"> 5049 | ```groovy 5050 | dependencies { 5051 | implementation platform("org.springframework.ai:spring-ai-mcp-server-spring-boot-starter") 5052 | implementation platform("org.springframework:spring-web") 5053 | } 5054 | ``` 5055 | </Tab> 5056 | </Tabs> 5057 | 5058 | Then configure your application by setting the applicaiton properties: 5059 | 5060 | <CodeGroup> 5061 | ```bash application.properties 5062 | spring.main.bannerMode=off 5063 | logging.pattern.console= 5064 | ``` 5065 | 5066 | ```yaml application.yml 5067 | logging: 5068 | pattern: 5069 | console: 5070 | spring: 5071 | main: 5072 | banner-mode: off 5073 | ``` 5074 | </CodeGroup> 5075 | 5076 | The [Server Configuration Properties](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-starter-docs.html#_configuration_properties) documents all available properties. 5077 | 5078 | Now let's dive into building your server. 5079 | 5080 | ## Building your server 5081 | 5082 | ### Weather Service 5083 | 5084 | Let's implement a [WeatheService.java](https://github.com/spring-projects/spring-ai-examples/blob/main/model-context-protocol/weather/starter-stdio-server/src/main/java/org/springframework/ai/mcp/sample/server/WeatherService.java) that uses a REST client to query the data from the National Weather Service API: 5085 | 5086 | ```java 5087 | @Service 5088 | public class WeatherService { 5089 | 5090 | private final RestClient restClient; 5091 | 5092 | public WeatherService() { 5093 | this.restClient = RestClient.builder() 5094 | .baseUrl("https://api.weather.gov") 5095 | .defaultHeader("Accept", "application/geo+json") 5096 | .defaultHeader("User-Agent", "WeatherApiClient/1.0 ([email protected])") 5097 | .build(); 5098 | } 5099 | 5100 | @Tool(description = "Get weather forecast for a specific latitude/longitude") 5101 | public String getWeatherForecastByLocation( 5102 | double latitude, // Latitude coordinate 5103 | double longitude // Longitude coordinate 5104 | ) { 5105 | // Returns detailed forecast including: 5106 | // - Temperature and unit 5107 | // - Wind speed and direction 5108 | // - Detailed forecast description 5109 | } 5110 | 5111 | @Tool(description = "Get weather alerts for a US state") 5112 | public String getAlerts( 5113 | @ToolParam(description = "Two-letter US state code (e.g. CA, NY") String state) 5114 | ) { 5115 | // Returns active alerts including: 5116 | // - Event type 5117 | // - Affected area 5118 | // - Severity 5119 | // - Description 5120 | // - Safety instructions 5121 | } 5122 | 5123 | // ...... 5124 | } 5125 | ``` 5126 | 5127 | The `@Service` annotation with auto-register the service in your applicaiton context. 5128 | The Spring AI `@Tool` annotation, making it easy to create and maintain MCP tools. 5129 | 5130 | The auto-configuration will automatically register these tools with the MCP server. 5131 | 5132 | ### Create your Boot Applicaiton 5133 | 5134 | ```java 5135 | @SpringBootApplication 5136 | public class McpServerApplication { 5137 | 5138 | public static void main(String[] args) { 5139 | SpringApplication.run(McpServerApplication.class, args); 5140 | } 5141 | 5142 | @Bean 5143 | public ToolCallbackProvider weatherTools(WeatherService weatherService) { 5144 | return MethodToolCallbackProvider.builder().toolObjects(weatherService).build(); 5145 | } 5146 | } 5147 | ``` 5148 | 5149 | Uses the the `MethodToolCallbackProvider` utils to convert the `@Tools` into actionalble callbackes used by the MCP server. 5150 | 5151 | ### Running the server 5152 | 5153 | Finally, let's build the server: 5154 | 5155 | ```bash 5156 | ./mvnw clean install 5157 | ``` 5158 | 5159 | This will generate a `mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar` file within the `target` folder. 5160 | 5161 | Let's now test your server from an existing MCP host, Claude for Desktop. 5162 | 5163 | ## Testing your server with Claude for Desktop 5164 | 5165 | <Note> 5166 | Claude for Desktop is not yet available on Linux. 5167 | </Note> 5168 | 5169 | First, make sure you have Claude for Desktop installed. 5170 | [You can install the latest version here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.** 5171 | 5172 | We'll need to configure Claude for Desktop for whichever MCP servers you want to use. 5173 | To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor. 5174 | Make sure to create the file if it doesn't exist. 5175 | 5176 | For example, if you have [VS Code](https://code.visualstudio.com/) installed: 5177 | 5178 | <Tabs> 5179 | <Tab title="MacOS/Linux"> 5180 | ```bash 5181 | code ~/Library/Application\ Support/Claude/claude_desktop_config.json 5182 | ``` 5183 | </Tab> 5184 | 5185 | <Tab title="Windows"> 5186 | ```powershell 5187 | code $env:AppData\Claude\claude_desktop_config.json 5188 | ``` 5189 | </Tab> 5190 | </Tabs> 5191 | 5192 | You'll then add your servers in the `mcpServers` key. 5193 | The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured. 5194 | 5195 | In this case, we'll add our single weather server like so: 5196 | 5197 | <Tabs> 5198 | <Tab title="MacOS/Linux"> 5199 | ```json java 5200 | { 5201 | "mcpServers": { 5202 | "spring-ai-mcp-weather": { 5203 | "command": "java", 5204 | "args": [ 5205 | "-Dspring.ai.mcp.server.stdio=true", 5206 | "-jar", 5207 | "/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar" 5208 | ] 5209 | } 5210 | } 5211 | } 5212 | ``` 5213 | </Tab> 5214 | 5215 | <Tab title="Windows"> 5216 | ```json java 5217 | { 5218 | "mcpServers": { 5219 | "spring-ai-mcp-weather": { 5220 | "command": "java", 5221 | "args": [ 5222 | "-Dspring.ai.mcp.server.transport=STDIO", 5223 | "-jar", 5224 | "C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather\\mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar" 5225 | ] 5226 | } 5227 | } 5228 | } 5229 | ``` 5230 | </Tab> 5231 | </Tabs> 5232 | 5233 | <Note> 5234 | Make sure you pass in the absolute path to your server. 5235 | </Note> 5236 | 5237 | This tells Claude for Desktop: 5238 | 5239 | 1. There's an MCP server named "my-weather-server" 5240 | 2. To launch it by running `java -jar /ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar` 5241 | 5242 | Save the file, and restart **Claude for Desktop**. 5243 | 5244 | ## Testing your server with Java client 5245 | 5246 | ### Create a MCP Client manually 5247 | 5248 | Use the `McpClient` to connect to the server: 5249 | 5250 | ```java 5251 | var stdioParams = ServerParameters.builder("java") 5252 | .args("-jar", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar") 5253 | .build(); 5254 | 5255 | var stdioTransport = new StdioClientTransport(stdioParams); 5256 | 5257 | var mcpClient = McpClient.sync(stdioTransport).build(); 5258 | 5259 | mcpClient.initialize(); 5260 | 5261 | ListToolsResult toolsList = mcpClient.listTools(); 5262 | 5263 | CallToolResult weather = mcpClient.callTool( 5264 | new CallToolRequest("getWeatherForecastByLocation", 5265 | Map.of("latitude", "47.6062", "longitude", "-122.3321"))); 5266 | 5267 | CallToolResult alert = mcpClient.callTool( 5268 | new CallToolRequest("getAlerts", Map.of("state", "NY"))); 5269 | 5270 | mcpClient.closeGracefully(); 5271 | ``` 5272 | 5273 | ### Use MCP Client Boot Starter 5274 | 5275 | Create a new boot starter applicaiton using the `spring-ai-mcp-client-spring-boot-starter` dependency: 5276 | 5277 | ```xml 5278 | <dependency> 5279 | <groupId>org.springframework.ai</groupId> 5280 | <artifactId>spring-ai-mcp-client-spring-boot-starter</artifactId> 5281 | </dependency> 5282 | ``` 5283 | 5284 | and set the `spring.ai.mcp.client.stdio.servers-configuration` property to point to your `claude_desktop_config.json`. 5285 | You can re-use the existing Anthropic Destop configuration: 5286 | 5287 | ```properties 5288 | spring.ai.mcp.client.stdio.servers-configuration=file:PATH/TO/claude_desktop_config.json 5289 | ``` 5290 | 5291 | When you stasrt your client applicaiton, the auto-configuration will create, automatically MCP clients from the claude\_desktop\_config.json. 5292 | 5293 | For more information, see the [MCP Client Boot Starters](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-client-docs.html) reference documentation. 5294 | 5295 | ## More Java MCP Server examples 5296 | 5297 | The [starter-webflux-server](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/weather/starter-webflux-server) demonstrates how to create a MCP server using SSE transport. 5298 | It showcases how to define and register MCP Tools, Resources, and Prompts, using the Spring Boot's auto-configuration capabilities. 5299 | </Tab> 5300 | </Tabs> 5301 | 5302 | ### Test with commands 5303 | 5304 | Let's make sure Claude for Desktop is picking up the two tools we've exposed in our `weather` server. You can do this by looking for the hammer <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon: 5305 | 5306 | <Frame> 5307 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/visual-indicator-mcp-tools.png" /> 5308 | </Frame> 5309 | 5310 | After clicking on the hammer icon, you should see two tools listed: 5311 | 5312 | <Frame> 5313 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/available-mcp-tools.png" /> 5314 | </Frame> 5315 | 5316 | If your server isn't being picked up by Claude for Desktop, proceed to the [Troubleshooting](#troubleshooting) section for debugging tips. 5317 | 5318 | If the hammer icon has shown up, you can now test your server by running the following commands in Claude for Desktop: 5319 | 5320 | * What's the weather in Sacramento? 5321 | * What are the active weather alerts in Texas? 5322 | 5323 | <Frame> 5324 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/current-weather.png" /> 5325 | </Frame> 5326 | 5327 | <Frame> 5328 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/weather-alerts.png" /> 5329 | </Frame> 5330 | 5331 | <Note> 5332 | Since this is the US National Weather service, the queries will only work for US locations. 5333 | </Note> 5334 | 5335 | ## What's happening under the hood 5336 | 5337 | When you ask a question: 5338 | 5339 | 1. The client sends your question to Claude 5340 | 2. Claude analyzes the available tools and decides which one(s) to use 5341 | 3. The client executes the chosen tool(s) through the MCP server 5342 | 4. The results are sent back to Claude 5343 | 5. Claude formulates a natural language response 5344 | 6. The response is displayed to you! 5345 | 5346 | ## Troubleshooting 5347 | 5348 | <AccordionGroup> 5349 | <Accordion title="Claude for Desktop Integration Issues"> 5350 | **Getting logs from Claude for Desktop** 5351 | 5352 | Claude.app logging related to MCP is written to log files in `~/Library/Logs/Claude`: 5353 | 5354 | * `mcp.log` will contain general logging about MCP connections and connection failures. 5355 | * Files named `mcp-server-SERVERNAME.log` will contain error (stderr) logging from the named server. 5356 | 5357 | You can run the following command to list recent logs and follow along with any new ones: 5358 | 5359 | ```bash 5360 | # Check Claude's logs for errors 5361 | tail -n 20 -f ~/Library/Logs/Claude/mcp*.log 5362 | ``` 5363 | 5364 | **Server not showing up in Claude** 5365 | 5366 | 1. Check your `claude_desktop_config.json` file syntax 5367 | 2. Make sure the path to your project is absolute and not relative 5368 | 3. Restart Claude for Desktop completely 5369 | 5370 | **Tool calls failing silently** 5371 | 5372 | If Claude attempts to use the tools but they fail: 5373 | 5374 | 1. Check Claude's logs for errors 5375 | 2. Verify your server builds and runs without errors 5376 | 3. Try restarting Claude for Desktop 5377 | 5378 | **None of this is working. What do I do?** 5379 | 5380 | Please refer to our [debugging guide](/docs/tools/debugging) for better debugging tools and more detailed guidance. 5381 | </Accordion> 5382 | 5383 | <Accordion title="Weather API Issues"> 5384 | **Error: Failed to retrieve grid point data** 5385 | 5386 | This usually means either: 5387 | 5388 | 1. The coordinates are outside the US 5389 | 2. The NWS API is having issues 5390 | 3. You're being rate limited 5391 | 5392 | Fix: 5393 | 5394 | * Verify you're using US coordinates 5395 | * Add a small delay between requests 5396 | * Check the NWS API status page 5397 | 5398 | **Error: No active alerts for \[STATE]** 5399 | 5400 | This isn't an error - it just means there are no current weather alerts for that state. Try a different state or check during severe weather. 5401 | </Accordion> 5402 | </AccordionGroup> 5403 | 5404 | <Note> 5405 | For more advanced troubleshooting, check out our guide on [Debugging MCP](/docs/tools/debugging) 5406 | </Note> 5407 | 5408 | ## Next steps 5409 | 5410 | <CardGroup cols={2}> 5411 | <Card title="Building a client" icon="outlet" href="/quickstart/client"> 5412 | Learn how to build your own MCP client that can connect to your server 5413 | </Card> 5414 | 5415 | <Card title="Example servers" icon="grid" href="/examples"> 5416 | Check out our gallery of official MCP servers and implementations 5417 | </Card> 5418 | 5419 | <Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging"> 5420 | Learn how to effectively debug MCP servers and integrations 5421 | </Card> 5422 | 5423 | <Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms"> 5424 | Learn how to use LLMs like Claude to speed up your MCP development 5425 | </Card> 5426 | </CardGroup> 5427 | 5428 | 5429 | # For Claude Desktop Users 5430 | Source: https://modelcontextprotocol.io/quickstart/user 5431 | 5432 | Get started using pre-built servers in Claude for Desktop. 5433 | 5434 | In this tutorial, you will extend [Claude for Desktop](https://claude.ai/download) so that it can read from your computer's file system, write new files, move files, and even search files. 5435 | 5436 | <Frame> 5437 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-filesystem.png" /> 5438 | </Frame> 5439 | 5440 | Don't worry — it will ask you for your permission before executing these actions! 5441 | 5442 | ## 1. Download Claude for Desktop 5443 | 5444 | Start by downloading [Claude for Desktop](https://claude.ai/download), choosing either macOS or Windows. (Linux is not yet supported for Claude for Desktop.) 5445 | 5446 | Follow the installation instructions. 5447 | 5448 | If you already have Claude for Desktop, make sure it's on the latest version by clicking on the Claude menu on your computer and selecting "Check for Updates..." 5449 | 5450 | <Accordion title="Why Claude for Desktop and not Claude.ai?"> 5451 | Because servers are locally run, MCP currently only supports desktop hosts. Remote hosts are in active development. 5452 | </Accordion> 5453 | 5454 | ## 2. Add the Filesystem MCP Server 5455 | 5456 | To add this filesystem functionality, we will be installing a pre-built [Filesystem MCP Server](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem) to Claude for Desktop. This is one of dozens of [servers](https://github.com/modelcontextprotocol/servers/tree/main) created by Anthropic and the community. 5457 | 5458 | Get started by opening up the Claude menu on your computer and select "Settings..." Please note that these are not the Claude Account Settings found in the app window itself. 5459 | 5460 | This is what it should look like on a Mac: 5461 | 5462 | <Frame style={{ textAlign: 'center' }}> 5463 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-menu.png" width="400" /> 5464 | </Frame> 5465 | 5466 | Click on "Developer" in the lefthand bar of the Settings pane, and then click on "Edit Config": 5467 | 5468 | <Frame> 5469 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-developer.png" /> 5470 | </Frame> 5471 | 5472 | This will create a configuration file at: 5473 | 5474 | * macOS: `~/Library/Application Support/Claude/claude_desktop_config.json` 5475 | * Windows: `%APPDATA%\Claude\claude_desktop_config.json` 5476 | 5477 | if you don't already have one, and will display the file in your file system. 5478 | 5479 | Open up the configuration file in any text editor. Replace the file contents with this: 5480 | 5481 | <Tabs> 5482 | <Tab title="MacOS/Linux"> 5483 | ```json 5484 | { 5485 | "mcpServers": { 5486 | "filesystem": { 5487 | "command": "npx", 5488 | "args": [ 5489 | "-y", 5490 | "@modelcontextprotocol/server-filesystem", 5491 | "/Users/username/Desktop", 5492 | "/Users/username/Downloads" 5493 | ] 5494 | } 5495 | } 5496 | } 5497 | ``` 5498 | </Tab> 5499 | 5500 | <Tab title="Windows"> 5501 | ```json 5502 | { 5503 | "mcpServers": { 5504 | "filesystem": { 5505 | "command": "npx", 5506 | "args": [ 5507 | "-y", 5508 | "@modelcontextprotocol/server-filesystem", 5509 | "C:\\Users\\username\\Desktop", 5510 | "C:\\Users\\username\\Downloads" 5511 | ] 5512 | } 5513 | } 5514 | } 5515 | ``` 5516 | </Tab> 5517 | </Tabs> 5518 | 5519 | Make sure to replace `username` with your computer's username. The paths should point to valid directories that you want Claude to be able to access and modify. It's set up to work for Desktop and Downloads, but you can add more paths as well. 5520 | 5521 | You will also need [Node.js](https://nodejs.org) on your computer for this to run properly. To verify you have Node installed, open the command line on your computer. 5522 | 5523 | * On macOS, open the Terminal from your Applications folder 5524 | * On Windows, press Windows + R, type "cmd", and press Enter 5525 | 5526 | Once in the command line, verify you have Node installed by entering in the following command: 5527 | 5528 | ```bash 5529 | node --version 5530 | ``` 5531 | 5532 | If you get an error saying "command not found" or "node is not recognized", download Node from [nodejs.org](https://nodejs.org/). 5533 | 5534 | <Tip> 5535 | **How does the configuration file work?** 5536 | 5537 | This configuration file tells Claude for Desktop which MCP servers to start up every time you start the application. In this case, we have added one server called "filesystem" that will use the Node `npx` command to install and run `@modelcontextprotocol/server-filesystem`. This server, described [here](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem), will let you access your file system in Claude for Desktop. 5538 | </Tip> 5539 | 5540 | <Warning> 5541 | **Command Privileges** 5542 | 5543 | Claude for Desktop will run the commands in the configuration file with the permissions of your user account, and access to your local files. Only add commands if you understand and trust the source. 5544 | </Warning> 5545 | 5546 | ## 3. Restart Claude 5547 | 5548 | After updating your configuration file, you need to restart Claude for Desktop. 5549 | 5550 | Upon restarting, you should see a hammer <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon in the bottom right corner of the input box: 5551 | 5552 | <Frame> 5553 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-hammer.png" /> 5554 | </Frame> 5555 | 5556 | After clicking on the hammer icon, you should see the tools that come with the Filesystem MCP Server: 5557 | 5558 | <Frame style={{ textAlign: 'center' }}> 5559 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-tools.png" width="400" /> 5560 | </Frame> 5561 | 5562 | If your server isn't being picked up by Claude for Desktop, proceed to the [Troubleshooting](#troubleshooting) section for debugging tips. 5563 | 5564 | ## 4. Try it out! 5565 | 5566 | You can now talk to Claude and ask it about your filesystem. It should know when to call the relevant tools. 5567 | 5568 | Things you might try asking Claude: 5569 | 5570 | * Can you write a poem and save it to my desktop? 5571 | * What are some work-related files in my downloads folder? 5572 | * Can you take all the images on my desktop and move them to a new folder called "Images"? 5573 | 5574 | As needed, Claude will call the relevant tools and seek your approval before taking an action: 5575 | 5576 | <Frame style={{ textAlign: 'center' }}> 5577 | <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-approve.png" width="500" /> 5578 | </Frame> 5579 | 5580 | ## Troubleshooting 5581 | 5582 | <AccordionGroup> 5583 | <Accordion title="Server not showing up in Claude / hammer icon missing"> 5584 | 1. Restart Claude for Desktop completely 5585 | 2. Check your `claude_desktop_config.json` file syntax 5586 | 3. Make sure the file paths included in `claude_desktop_config.json` are valid and that they are absolute and not relative 5587 | 4. Look at [logs](#getting-logs-from-claude-for-desktop) to see why the server is not connecting 5588 | 5. In your command line, try manually running the server (replacing `username` as you did in `claude_desktop_config.json`) to see if you get any errors: 5589 | 5590 | <Tabs> 5591 | <Tab title="MacOS/Linux"> 5592 | ```bash 5593 | npx -y @modelcontextprotocol/server-filesystem /Users/username/Desktop /Users/username/Downloads 5594 | ``` 5595 | </Tab> 5596 | 5597 | <Tab title="Windows"> 5598 | ```bash 5599 | npx -y @modelcontextprotocol/server-filesystem C:\Users\username\Desktop C:\Users\username\Downloads 5600 | ``` 5601 | </Tab> 5602 | </Tabs> 5603 | </Accordion> 5604 | 5605 | <Accordion title="Getting logs from Claude for Desktop"> 5606 | Claude.app logging related to MCP is written to log files in: 5607 | 5608 | * macOS: `~/Library/Logs/Claude` 5609 | 5610 | * Windows: `%APPDATA%\Claude\logs` 5611 | 5612 | * `mcp.log` will contain general logging about MCP connections and connection failures. 5613 | 5614 | * Files named `mcp-server-SERVERNAME.log` will contain error (stderr) logging from the named server. 5615 | 5616 | You can run the following command to list recent logs and follow along with any new ones (on Windows, it will only show recent logs): 5617 | 5618 | <Tabs> 5619 | <Tab title="MacOS/Linux"> 5620 | ```bash 5621 | # Check Claude's logs for errors 5622 | tail -n 20 -f ~/Library/Logs/Claude/mcp*.log 5623 | ``` 5624 | </Tab> 5625 | 5626 | <Tab title="Windows"> 5627 | ```bash 5628 | type "%APPDATA%\Claude\logs\mcp*.log" 5629 | ``` 5630 | </Tab> 5631 | </Tabs> 5632 | </Accordion> 5633 | 5634 | <Accordion title="Tool calls failing silently"> 5635 | If Claude attempts to use the tools but they fail: 5636 | 5637 | 1. Check Claude's logs for errors 5638 | 2. Verify your server builds and runs without errors 5639 | 3. Try restarting Claude for Desktop 5640 | </Accordion> 5641 | 5642 | <Accordion title="None of this is working. What do I do?"> 5643 | Please refer to our [debugging guide](/docs/tools/debugging) for better debugging tools and more detailed guidance. 5644 | </Accordion> 5645 | 5646 | <Accordion title="ENOENT error and `${APPDATA}` in paths on Windows"> 5647 | If your configured server fails to load, and you see within its logs an error referring to `${APPDATA}` within a path, you may need to add the expanded value of `%APPDATA%` to your `env` key in `claude_desktop_config.json`: 5648 | 5649 | ```json 5650 | { 5651 | "brave-search": { 5652 | "command": "npx", 5653 | "args": ["-y", "@modelcontextprotocol/server-brave-search"], 5654 | "env": { 5655 | "APPDATA": "C:\\Users\\user\\AppData\\Roaming\\", 5656 | "BRAVE_API_KEY": "..." 5657 | } 5658 | } 5659 | } 5660 | ``` 5661 | 5662 | With this change in place, launch Claude Desktop once again. 5663 | 5664 | <Warning> 5665 | **NPM should be installed globally** 5666 | 5667 | The `npx` command may continue to fail if you have not installed NPM globally. If NPM is already installed globally, you will find `%APPDATA%\npm` exists on your system. If not, you can install NPM globally by running the following command: 5668 | 5669 | ```bash 5670 | npm install -g npm 5671 | ``` 5672 | </Warning> 5673 | </Accordion> 5674 | </AccordionGroup> 5675 | 5676 | ## Next steps 5677 | 5678 | <CardGroup cols={2}> 5679 | <Card title="Explore other servers" icon="grid" href="/examples"> 5680 | Check out our gallery of official MCP servers and implementations 5681 | </Card> 5682 | 5683 | <Card title="Build your own server" icon="code" href="/quickstart/server"> 5684 | Now build your own custom server to use in Claude for Desktop and other clients 5685 | </Card> 5686 | </CardGroup> 5687 | 5688 | 5689 | # MCP Client 5690 | Source: https://modelcontextprotocol.io/sdk/java/mcp-client 5691 | 5692 | Learn how to use the Model Context Protocol (MCP) client to interact with MCP servers 5693 | 5694 | # Model Context Protocol Client 5695 | 5696 | The MCP Client is a key component in the Model Context Protocol (MCP) architecture, responsible for establishing and managing connections with MCP servers. It implements the client-side of the protocol, handling: 5697 | 5698 | * Protocol version negotiation to ensure compatibility with servers 5699 | * Capability negotiation to determine available features 5700 | * Message transport and JSON-RPC communication 5701 | * Tool discovery and execution 5702 | * Resource access and management 5703 | * Prompt system interactions 5704 | * Optional features like roots management and sampling support 5705 | 5706 | The client provides both synchronous and asynchronous APIs for flexibility in different application contexts. 5707 | 5708 | <Tabs> 5709 | <Tab title="Sync API"> 5710 | ```java 5711 | // Create a sync client with custom configuration 5712 | McpSyncClient client = McpClient.sync(transport) 5713 | .requestTimeout(Duration.ofSeconds(10)) 5714 | .capabilities(ClientCapabilities.builder() 5715 | .roots(true) // Enable roots capability 5716 | .sampling() // Enable sampling capability 5717 | .build()) 5718 | .sampling(request -> new CreateMessageResult(response)) 5719 | .build(); 5720 | 5721 | // Initialize connection 5722 | client.initialize(); 5723 | 5724 | // List available tools 5725 | ListToolsResult tools = client.listTools(); 5726 | 5727 | // Call a tool 5728 | CallToolResult result = client.callTool( 5729 | new CallToolRequest("calculator", 5730 | Map.of("operation", "add", "a", 2, "b", 3)) 5731 | ); 5732 | 5733 | // List and read resources 5734 | ListResourcesResult resources = client.listResources(); 5735 | ReadResourceResult resource = client.readResource( 5736 | new ReadResourceRequest("resource://uri") 5737 | ); 5738 | 5739 | // List and use prompts 5740 | ListPromptsResult prompts = client.listPrompts(); 5741 | GetPromptResult prompt = client.getPrompt( 5742 | new GetPromptRequest("greeting", Map.of("name", "Spring")) 5743 | ); 5744 | 5745 | // Add/remove roots 5746 | client.addRoot(new Root("file:///path", "description")); 5747 | client.removeRoot("file:///path"); 5748 | 5749 | // Close client 5750 | client.closeGracefully(); 5751 | ``` 5752 | </Tab> 5753 | 5754 | <Tab title="Async API"> 5755 | ```java 5756 | // Create an async client with custom configuration 5757 | McpAsyncClient client = McpClient.async(transport) 5758 | .requestTimeout(Duration.ofSeconds(10)) 5759 | .capabilities(ClientCapabilities.builder() 5760 | .roots(true) // Enable roots capability 5761 | .sampling() // Enable sampling capability 5762 | .build()) 5763 | .sampling(request -> Mono.just(new CreateMessageResult(response))) 5764 | .toolsChangeConsumer(tools -> Mono.fromRunnable(() -> { 5765 | logger.info("Tools updated: {}", tools); 5766 | })) 5767 | .resourcesChangeConsumer(resources -> Mono.fromRunnable(() -> { 5768 | logger.info("Resources updated: {}", resources); 5769 | })) 5770 | .promptsChangeConsumer(prompts -> Mono.fromRunnable(() -> { 5771 | logger.info("Prompts updated: {}", prompts); 5772 | })) 5773 | .build(); 5774 | 5775 | // Initialize connection and use features 5776 | client.initialize() 5777 | .flatMap(initResult -> client.listTools()) 5778 | .flatMap(tools -> { 5779 | return client.callTool(new CallToolRequest( 5780 | "calculator", 5781 | Map.of("operation", "add", "a", 2, "b", 3) 5782 | )); 5783 | }) 5784 | .flatMap(result -> { 5785 | return client.listResources() 5786 | .flatMap(resources -> 5787 | client.readResource(new ReadResourceRequest("resource://uri")) 5788 | ); 5789 | }) 5790 | .flatMap(resource -> { 5791 | return client.listPrompts() 5792 | .flatMap(prompts -> 5793 | client.getPrompt(new GetPromptRequest( 5794 | "greeting", 5795 | Map.of("name", "Spring") 5796 | )) 5797 | ); 5798 | }) 5799 | .flatMap(prompt -> { 5800 | return client.addRoot(new Root("file:///path", "description")) 5801 | .then(client.removeRoot("file:///path")); 5802 | }) 5803 | .doFinally(signalType -> { 5804 | client.closeGracefully().subscribe(); 5805 | }) 5806 | .subscribe(); 5807 | ``` 5808 | </Tab> 5809 | </Tabs> 5810 | 5811 | ## Client Transport 5812 | 5813 | The transport layer handles the communication between MCP clients and servers, providing different implementations for various use cases. The client transport manages message serialization, connection establishment, and protocol-specific communication patterns. 5814 | 5815 | <Tabs> 5816 | <Tab title="STDIO"> 5817 | Creates transport for in-process based communication 5818 | 5819 | ```java 5820 | ServerParameters params = ServerParameters.builder("npx") 5821 | .args("-y", "@modelcontextprotocol/server-everything", "dir") 5822 | .build(); 5823 | McpTransport transport = new StdioClientTransport(params); 5824 | ``` 5825 | </Tab> 5826 | 5827 | <Tab title="SSE (HttpClient)"> 5828 | Creates a framework agnostic (pure Java API) SSE client transport. Included in the core mcp module. 5829 | 5830 | ```java 5831 | McpTransport transport = new HttpClientSseClientTransport("http://your-mcp-server"); 5832 | ``` 5833 | </Tab> 5834 | 5835 | <Tab title="SSE (WebFlux)"> 5836 | Creates WebFlux-based SSE client transport. Requires the mcp-webflux-sse-transport dependency. 5837 | 5838 | ```java 5839 | WebClient.Builder webClientBuilder = WebClient.builder() 5840 | .baseUrl("http://your-mcp-server"); 5841 | McpTransport transport = new WebFluxSseClientTransport(webClientBuilder); 5842 | ``` 5843 | </Tab> 5844 | </Tabs> 5845 | 5846 | ## Client Capabilities 5847 | 5848 | The client can be configured with various capabilities: 5849 | 5850 | ```java 5851 | var capabilities = ClientCapabilities.builder() 5852 | .roots(true) // Enable filesystem roots support with list changes notifications 5853 | .sampling() // Enable LLM sampling support 5854 | .build(); 5855 | ``` 5856 | 5857 | ### Roots Support 5858 | 5859 | Roots define the boundaries of where servers can operate within the filesystem: 5860 | 5861 | ```java 5862 | // Add a root dynamically 5863 | client.addRoot(new Root("file:///path", "description")); 5864 | 5865 | // Remove a root 5866 | client.removeRoot("file:///path"); 5867 | 5868 | // Notify server of roots changes 5869 | client.rootsListChangedNotification(); 5870 | ``` 5871 | 5872 | The roots capability allows servers to: 5873 | 5874 | * Request the list of accessible filesystem roots 5875 | * Receive notifications when the roots list changes 5876 | * Understand which directories and files they have access to 5877 | 5878 | ### Sampling Support 5879 | 5880 | Sampling enables servers to request LLM interactions ("completions" or "generations") through the client: 5881 | 5882 | ```java 5883 | // Configure sampling handler 5884 | Function<CreateMessageRequest, CreateMessageResult> samplingHandler = request -> { 5885 | // Sampling implementation that interfaces with LLM 5886 | return new CreateMessageResult(response); 5887 | }; 5888 | 5889 | // Create client with sampling support 5890 | var client = McpClient.sync(transport) 5891 | .capabilities(ClientCapabilities.builder() 5892 | .sampling() 5893 | .build()) 5894 | .sampling(samplingHandler) 5895 | .build(); 5896 | ``` 5897 | 5898 | This capability allows: 5899 | 5900 | * Servers to leverage AI capabilities without requiring API keys 5901 | * Clients to maintain control over model access and permissions 5902 | * Support for both text and image-based interactions 5903 | * Optional inclusion of MCP server context in prompts 5904 | 5905 | ## Using MCP Clients 5906 | 5907 | ### Tool Execution 5908 | 5909 | Tools are server-side functions that clients can discover and execute. The MCP client provides methods to list available tools and execute them with specific parameters. Each tool has a unique name and accepts a map of parameters. 5910 | 5911 | <Tabs> 5912 | <Tab title="Sync API"> 5913 | ```java 5914 | // List available tools and their names 5915 | var tools = client.listTools(); 5916 | tools.forEach(tool -> System.out.println(tool.getName())); 5917 | 5918 | // Execute a tool with parameters 5919 | var result = client.callTool("calculator", Map.of( 5920 | "operation", "add", 5921 | "a", 1, 5922 | "b", 2 5923 | )); 5924 | ``` 5925 | </Tab> 5926 | 5927 | <Tab title="Async API"> 5928 | ```java 5929 | // List available tools asynchronously 5930 | client.listTools() 5931 | .doOnNext(tools -> tools.forEach(tool -> 5932 | System.out.println(tool.getName()))) 5933 | .subscribe(); 5934 | 5935 | // Execute a tool asynchronously 5936 | client.callTool("calculator", Map.of( 5937 | "operation", "add", 5938 | "a", 1, 5939 | "b", 2 5940 | )) 5941 | .subscribe(); 5942 | ``` 5943 | </Tab> 5944 | </Tabs> 5945 | 5946 | ### Resource Access 5947 | 5948 | Resources represent server-side data sources that clients can access using URI templates. The MCP client provides methods to discover available resources and retrieve their contents through a standardized interface. 5949 | 5950 | <Tabs> 5951 | <Tab title="Sync API"> 5952 | ```java 5953 | // List available resources and their names 5954 | var resources = client.listResources(); 5955 | resources.forEach(resource -> System.out.println(resource.getName())); 5956 | 5957 | // Retrieve resource content using a URI template 5958 | var content = client.getResource("file", Map.of( 5959 | "path", "/path/to/file.txt" 5960 | )); 5961 | ``` 5962 | </Tab> 5963 | 5964 | <Tab title="Async API"> 5965 | ```java 5966 | // List available resources asynchronously 5967 | client.listResources() 5968 | .doOnNext(resources -> resources.forEach(resource -> 5969 | System.out.println(resource.getName()))) 5970 | .subscribe(); 5971 | 5972 | // Retrieve resource content asynchronously 5973 | client.getResource("file", Map.of( 5974 | "path", "/path/to/file.txt" 5975 | )) 5976 | .subscribe(); 5977 | ``` 5978 | </Tab> 5979 | </Tabs> 5980 | 5981 | ### Prompt System 5982 | 5983 | The prompt system enables interaction with server-side prompt templates. These templates can be discovered and executed with custom parameters, allowing for dynamic text generation based on predefined patterns. 5984 | 5985 | <Tabs> 5986 | <Tab title="Sync API"> 5987 | ```java 5988 | // List available prompt templates 5989 | var prompts = client.listPrompts(); 5990 | prompts.forEach(prompt -> System.out.println(prompt.getName())); 5991 | 5992 | // Execute a prompt template with parameters 5993 | var response = client.executePrompt("echo", Map.of( 5994 | "text", "Hello, World!" 5995 | )); 5996 | ``` 5997 | </Tab> 5998 | 5999 | <Tab title="Async API"> 6000 | ```java 6001 | // List available prompt templates asynchronously 6002 | client.listPrompts() 6003 | .doOnNext(prompts -> prompts.forEach(prompt -> 6004 | System.out.println(prompt.getName()))) 6005 | .subscribe(); 6006 | 6007 | // Execute a prompt template asynchronously 6008 | client.executePrompt("echo", Map.of( 6009 | "text", "Hello, World!" 6010 | )) 6011 | .subscribe(); 6012 | ``` 6013 | </Tab> 6014 | </Tabs> 6015 | 6016 | 6017 | # Overview 6018 | Source: https://modelcontextprotocol.io/sdk/java/mcp-overview 6019 | 6020 | Introduction to the Model Context Protocol (MCP) Java SDK 6021 | 6022 | Java SDK for the [Model Context Protocol](https://modelcontextprotocol.org/docs/concepts/architecture) 6023 | enables standardized integration between AI models and tools. 6024 | 6025 | ## Features 6026 | 6027 | * MCP Client and MCP Server implementations supporting: 6028 | * Protocol [version compatibility negotiation](https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/lifecycle/#initialization) 6029 | * [Tool](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/tools/) discovery, execution, list change notifications 6030 | * [Resource](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/resources/) management with URI templates 6031 | * [Roots](https://spec.modelcontextprotocol.io/specification/2024-11-05/client/roots/) list management and notifications 6032 | * [Prompt](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/prompts/) handling and management 6033 | * [Sampling](https://spec.modelcontextprotocol.io/specification/2024-11-05/client/sampling/) support for AI model interactions 6034 | * Multiple transport implementations: 6035 | * Default transports: 6036 | * Stdio-based transport for process-based communication 6037 | * Java HttpClient-based SSE client transport for HTTP SSE Client-side streaming 6038 | * Servlet-based SSE server transport for HTTP SSE Server streaming 6039 | * Spring-based transports: 6040 | * WebFlux SSE client and server transports for reactive HTTP streaming 6041 | * WebMVC SSE transport for servlet-based HTTP streaming 6042 | * Supports Synchronous and Asynchronous programming paradigms 6043 | 6044 | ## Architecture 6045 | 6046 | The SDK follows a layered architecture with clear separation of concerns: 6047 | 6048 |  6049 | 6050 | * **Client/Server Layer (McpClient/McpServer)**: Both use McpSession for sync/async operations, 6051 | with McpClient handling client-side protocol operations and McpServer managing server-side protocol operations. 6052 | * **Session Layer (McpSession)**: Manages communication patterns and state using DefaultMcpSession implementation. 6053 | * **Transport Layer (McpTransport)**: Handles JSON-RPC message serialization/deserialization via: 6054 | * StdioTransport (stdin/stdout) in the core module 6055 | * HTTP SSE transports in dedicated transport modules (Java HttpClient, Spring WebFlux, Spring WebMVC) 6056 | 6057 | The MCP Client is a key component in the Model Context Protocol (MCP) architecture, responsible for establishing and managing connections with MCP servers. 6058 | It implements the client-side of the protocol. 6059 | 6060 |  6061 | 6062 | The MCP Server is a foundational component in the Model Context Protocol (MCP) architecture that provides tools, resources, and capabilities to clients. 6063 | It implements the server-side of the protocol. 6064 | 6065 |  6066 | 6067 | Key Interactions: 6068 | 6069 | * **Client/Server Initialization**: Transport setup, protocol compatibility check, capability negotiation, and implementation details exchange. 6070 | * **Message Flow**: JSON-RPC message handling with validation, type-safe response processing, and error handling. 6071 | * **Resource Management**: Resource discovery, URI template-based access, subscription system, and content retrieval. 6072 | 6073 | ## Dependencies 6074 | 6075 | Add the following Maven dependency to your project: 6076 | 6077 | <Tabs> 6078 | <Tab title="Maven"> 6079 | The core MCP functionality: 6080 | 6081 | ```xml 6082 | <dependency> 6083 | <groupId>io.modelcontextprotocol.sdk</groupId> 6084 | <artifactId>mcp</artifactId> 6085 | </dependency> 6086 | ``` 6087 | 6088 | For HTTP SSE transport implementations, add one of the following dependencies: 6089 | 6090 | ```xml 6091 | <!-- Spring WebFlux-based SSE client and server transport --> 6092 | <dependency> 6093 | <groupId>io.modelcontextprotocol.sdk</groupId> 6094 | <artifactId>mcp-spring-webflux</artifactId> 6095 | </dependency> 6096 | 6097 | <!-- Spring WebMVC-based SSE server transport --> 6098 | <dependency> 6099 | <groupId>io.modelcontextprotocol.sdk</groupId> 6100 | <artifactId>mcp-spring-webmvc</artifactId> 6101 | </dependency> 6102 | ``` 6103 | </Tab> 6104 | 6105 | <Tab title="Gradle"> 6106 | The core MCP functionality: 6107 | 6108 | ```groovy 6109 | dependencies { 6110 | implementation platform("io.modelcontextprotocol.sdk:mcp") 6111 | //... 6112 | } 6113 | ``` 6114 | 6115 | For HTTP SSE transport implementations, add one of the following dependencies: 6116 | 6117 | ```groovy 6118 | // Spring WebFlux-based SSE client and server transport 6119 | dependencies { 6120 | implementation platform("io.modelcontextprotocol.sdk:mcp-spring-webflux") 6121 | } 6122 | 6123 | // Spring WebMVC-based SSE server transport 6124 | dependencies { 6125 | implementation platform("io.modelcontextprotocol.sdk:mcp-spring-webmvc") 6126 | } 6127 | ``` 6128 | </Tab> 6129 | </Tabs> 6130 | 6131 | ### Bill of Materials (BOM) 6132 | 6133 | The Bill of Materials (BOM) declares the recommended versions of all the dependencies used by a given release. 6134 | Using the BOM from your application's build script avoids the need for you to specify and maintain the dependency versions yourself. 6135 | Instead, the version of the BOM you're using determines the utilized dependency versions. 6136 | It also ensures that you're using supported and tested versions of the dependencies by default, unless you choose to override them. 6137 | 6138 | Add the BOM to your project: 6139 | 6140 | <Tabs> 6141 | <Tab title="Maven"> 6142 | ```xml 6143 | <dependencyManagement> 6144 | <dependencies> 6145 | <dependency> 6146 | <groupId>io.modelcontextprotocol.sdk</groupId> 6147 | <artifactId>mcp-bom</artifactId> 6148 | <version>0.7.0</version> 6149 | <type>pom</type> 6150 | <scope>import</scope> 6151 | </dependency> 6152 | </dependencies> 6153 | </dependencyManagement> 6154 | ``` 6155 | </Tab> 6156 | 6157 | <Tab title="Gradle"> 6158 | ```groovy 6159 | dependencies { 6160 | implementation platform("io.modelcontextprotocol.sdk:mcp-bom:0.7.0") 6161 | //... 6162 | } 6163 | ``` 6164 | 6165 | Gradle users can also use the Spring AI MCP BOM by leveraging Gradle (5.0+) native support for declaring dependency constraints using a Maven BOM. 6166 | This is implemented by adding a 'platform' dependency handler method to the dependencies section of your Gradle build script. 6167 | As shown in the snippet above this can then be followed by version-less declarations of the Starter Dependencies for the one or more spring-ai modules you wish to use, e.g. spring-ai-openai. 6168 | </Tab> 6169 | </Tabs> 6170 | 6171 | Replace the version number with the version of the BOM you want to use. 6172 | 6173 | ### Available Dependencies 6174 | 6175 | The following dependencies are available and managed by the BOM: 6176 | 6177 | * Core Dependencies 6178 | * `io.modelcontextprotocol.sdk:mcp` - Core MCP library providing the base functionality and APIs for Model Context Protocol implementation. 6179 | * Transport Dependencies 6180 | * `io.modelcontextprotocol.sdk:mcp-spring-webflux` - WebFlux-based Server-Sent Events (SSE) transport implementation for reactive applications. 6181 | * `io.modelcontextprotocol.sdk:mcp-spring-webmvc` - WebMVC-based Server-Sent Events (SSE) transport implementation for servlet-based applications. 6182 | * Testing Dependencies 6183 | * `io.modelcontextprotocol.sdk:mcp-test` - Testing utilities and support for MCP-based applications. 6184 | 6185 | 6186 | # MCP Server 6187 | Source: https://modelcontextprotocol.io/sdk/java/mcp-server 6188 | 6189 | Learn how to implement and configure a Model Context Protocol (MCP) server 6190 | 6191 | ## Overview 6192 | 6193 | The MCP Server is a foundational component in the Model Context Protocol (MCP) architecture that provides tools, resources, and capabilities to clients. It implements the server-side of the protocol, responsible for: 6194 | 6195 | * Exposing tools that clients can discover and execute 6196 | * Managing resources with URI-based access patterns 6197 | * Providing prompt templates and handling prompt requests 6198 | * Supporting capability negotiation with clients 6199 | * Implementing server-side protocol operations 6200 | * Managing concurrent client connections 6201 | * Providing structured logging and notifications 6202 | 6203 | The server supports both synchronous and asynchronous APIs, allowing for flexible integration in different application contexts. 6204 | 6205 | <Tabs> 6206 | <Tab title="Sync API"> 6207 | ```java 6208 | // Create a server with custom configuration 6209 | McpSyncServer syncServer = McpServer.sync(transport) 6210 | .serverInfo("my-server", "1.0.0") 6211 | .capabilities(ServerCapabilities.builder() 6212 | .resources(true) // Enable resource support 6213 | .tools(true) // Enable tool support 6214 | .prompts(true) // Enable prompt support 6215 | .logging() // Enable logging support 6216 | .build()) 6217 | .build(); 6218 | 6219 | // Register tools, resources, and prompts 6220 | syncServer.addTool(syncToolRegistration); 6221 | syncServer.addResource(syncResourceRegistration); 6222 | syncServer.addPrompt(syncPromptRegistration); 6223 | 6224 | // Send logging notifications 6225 | syncServer.loggingNotification(LoggingMessageNotification.builder() 6226 | .level(LoggingLevel.INFO) 6227 | .logger("custom-logger") 6228 | .data("Server initialized") 6229 | .build()); 6230 | 6231 | // Close the server when done 6232 | syncServer.close(); 6233 | ``` 6234 | </Tab> 6235 | 6236 | <Tab title="Async API"> 6237 | ```java 6238 | // Create an async server with custom configuration 6239 | McpAsyncServer asyncServer = McpServer.async(transport) 6240 | .serverInfo("my-server", "1.0.0") 6241 | .capabilities(ServerCapabilities.builder() 6242 | .resources(true) // Enable resource support 6243 | .tools(true) // Enable tool support 6244 | .prompts(true) // Enable prompt support 6245 | .logging() // Enable logging support 6246 | .build()) 6247 | .build(); 6248 | 6249 | // Register tools, resources, and prompts 6250 | asyncServer.addTool(asyncToolRegistration) 6251 | .doOnSuccess(v -> logger.info("Tool registered")) 6252 | .subscribe(); 6253 | 6254 | asyncServer.addResource(asyncResourceRegistration) 6255 | .doOnSuccess(v -> logger.info("Resource registered")) 6256 | .subscribe(); 6257 | 6258 | asyncServer.addPrompt(asyncPromptRegistration) 6259 | .doOnSuccess(v -> logger.info("Prompt registered")) 6260 | .subscribe(); 6261 | 6262 | // Send logging notifications 6263 | asyncServer.loggingNotification(LoggingMessageNotification.builder() 6264 | .level(LoggingLevel.INFO) 6265 | .logger("custom-logger") 6266 | .data("Server initialized") 6267 | .build()); 6268 | 6269 | // Close the server when done 6270 | asyncServer.close() 6271 | .doOnSuccess(v -> logger.info("Server closed")) 6272 | .subscribe(); 6273 | ``` 6274 | </Tab> 6275 | </Tabs> 6276 | 6277 | ## Server Transport 6278 | 6279 | The transport layer in the MCP SDK is responsible for handling the communication between clients and servers. It provides different implementations to support various communication protocols and patterns. The SDK includes several built-in transport implementations: 6280 | 6281 | <Tabs> 6282 | <Tab title="STDIO"> 6283 | <> 6284 | Create in-process based transport: 6285 | 6286 | ```java 6287 | StdioServerTransport transport = new StdioServerTransport(new ObjectMapper()); 6288 | ``` 6289 | 6290 | Provides bidirectional JSON-RPC message handling over standard input/output streams with non-blocking message processing, serialization/deserialization, and graceful shutdown support. 6291 | 6292 | Key features: 6293 | 6294 | <ul> 6295 | <li>Bidirectional communication through stdin/stdout</li> 6296 | <li>Process-based integration support</li> 6297 | <li>Simple setup and configuration</li> 6298 | <li>Lightweight implementation</li> 6299 | </ul> 6300 | </> 6301 | </Tab> 6302 | 6303 | <Tab title="SSE (WebFlux)"> 6304 | <> 6305 | <p>Creates WebFlux-based SSE server transport.<br />Requires the <code>mcp-spring-webflux</code> dependency.</p> 6306 | 6307 | ```java 6308 | @Configuration 6309 | class McpConfig { 6310 | @Bean 6311 | WebFluxSseServerTransport webFluxSseServerTransport(ObjectMapper mapper) { 6312 | return new WebFluxSseServerTransport(mapper, "/mcp/message"); 6313 | } 6314 | 6315 | @Bean 6316 | RouterFunction<?> mcpRouterFunction(WebFluxSseServerTransport transport) { 6317 | return transport.getRouterFunction(); 6318 | } 6319 | } 6320 | ``` 6321 | 6322 | <p>Implements the MCP HTTP with SSE transport specification, providing:</p> 6323 | 6324 | <ul> 6325 | <li>Reactive HTTP streaming with WebFlux</li> 6326 | <li>Concurrent client connections through SSE endpoints</li> 6327 | <li>Message routing and session management</li> 6328 | <li>Graceful shutdown capabilities</li> 6329 | </ul> 6330 | </> 6331 | </Tab> 6332 | 6333 | <Tab title="SSE (WebMvc)"> 6334 | <> 6335 | <p>Creates WebMvc-based SSE server transport.<br />Requires the <code>mcp-spring-webmvc</code> dependency.</p> 6336 | 6337 | ```java 6338 | @Configuration 6339 | @EnableWebMvc 6340 | class McpConfig { 6341 | @Bean 6342 | WebMvcSseServerTransport webMvcSseServerTransport(ObjectMapper mapper) { 6343 | return new WebMvcSseServerTransport(mapper, "/mcp/message"); 6344 | } 6345 | 6346 | @Bean 6347 | RouterFunction<ServerResponse> mcpRouterFunction(WebMvcSseServerTransport transport) { 6348 | return transport.getRouterFunction(); 6349 | } 6350 | } 6351 | ``` 6352 | 6353 | <p>Implements the MCP HTTP with SSE transport specification, providing:</p> 6354 | 6355 | <ul> 6356 | <li>Server-side event streaming</li> 6357 | <li>Integration with Spring WebMVC</li> 6358 | <li>Support for traditional web applications</li> 6359 | <li>Synchronous operation handling</li> 6360 | </ul> 6361 | </> 6362 | </Tab> 6363 | 6364 | <Tab title="SSE (Servlet)"> 6365 | <> 6366 | <p> 6367 | Creates a Servlet-based SSE server transport. It is included in the core <code>mcp</code> module.<br /> 6368 | The <code>HttpServletSseServerTransport</code> can be used with any Servlet container.<br /> 6369 | To use it with a Spring Web application, you can register it as a Servlet bean: 6370 | </p> 6371 | 6372 | ```java 6373 | @Configuration 6374 | @EnableWebMvc 6375 | public class McpServerConfig implements WebMvcConfigurer { 6376 | 6377 | @Bean 6378 | public HttpServletSseServerTransport servletSseServerTransport() { 6379 | return new HttpServletSseServerTransport(new ObjectMapper(), "/mcp/message"); 6380 | } 6381 | 6382 | @Bean 6383 | public ServletRegistrationBean customServletBean(HttpServletSseServerTransport servlet) { 6384 | return new ServletRegistrationBean(servlet); 6385 | } 6386 | } 6387 | ``` 6388 | 6389 | <p> 6390 | Implements the MCP HTTP with SSE transport specification using the traditional Servlet API, providing: 6391 | </p> 6392 | 6393 | <ul> 6394 | <li>Asynchronous message handling using Servlet 6.0 async support</li> 6395 | <li>Session management for multiple client connections</li> 6396 | 6397 | <li> 6398 | Two types of endpoints: 6399 | 6400 | <ul> 6401 | <li>SSE endpoint (<code>/sse</code>) for server-to-client events</li> 6402 | <li>Message endpoint (configurable) for client-to-server requests</li> 6403 | </ul> 6404 | </li> 6405 | 6406 | <li>Error handling and response formatting</li> 6407 | <li>Graceful shutdown support</li> 6408 | </ul> 6409 | </> 6410 | </Tab> 6411 | </Tabs> 6412 | 6413 | ## Server Capabilities 6414 | 6415 | The server can be configured with various capabilities: 6416 | 6417 | ```java 6418 | var capabilities = ServerCapabilities.builder() 6419 | .resources(false, true) // Resource support with list changes notifications 6420 | .tools(true) // Tool support with list changes notifications 6421 | .prompts(true) // Prompt support with list changes notifications 6422 | .logging() // Enable logging support (enabled by default with loging level INFO) 6423 | .build(); 6424 | ``` 6425 | 6426 | ### Logging Support 6427 | 6428 | The server provides structured logging capabilities that allow sending log messages to clients with different severity levels: 6429 | 6430 | ```java 6431 | // Send a log message to clients 6432 | server.loggingNotification(LoggingMessageNotification.builder() 6433 | .level(LoggingLevel.INFO) 6434 | .logger("custom-logger") 6435 | .data("Custom log message") 6436 | .build()); 6437 | ``` 6438 | 6439 | Clients can control the minimum logging level they receive through the `mcpClient.setLoggingLevel(level)` request. Messages below the set level will be filtered out. 6440 | Supported logging levels (in order of increasing severity): DEBUG (0), INFO (1), NOTICE (2), WARNING (3), ERROR (4), CRITICAL (5), ALERT (6), EMERGENCY (7) 6441 | 6442 | ### Tool Registration 6443 | 6444 | <Tabs> 6445 | <Tab title="Sync"> 6446 | ```java 6447 | // Sync tool registration 6448 | var schema = """ 6449 | { 6450 | "type" : "object", 6451 | "id" : "urn:jsonschema:Operation", 6452 | "properties" : { 6453 | "operation" : { 6454 | "type" : "string" 6455 | }, 6456 | "a" : { 6457 | "type" : "number" 6458 | }, 6459 | "b" : { 6460 | "type" : "number" 6461 | } 6462 | } 6463 | } 6464 | """; 6465 | var syncToolRegistration = new McpServerFeatures.SyncToolRegistration( 6466 | new Tool("calculator", "Basic calculator", schema), 6467 | arguments -> { 6468 | // Tool implementation 6469 | return new CallToolResult(result, false); 6470 | } 6471 | ); 6472 | ``` 6473 | </Tab> 6474 | 6475 | <Tab title="Async"> 6476 | ```java 6477 | // Async tool registration 6478 | var schema = """ 6479 | { 6480 | "type" : "object", 6481 | "id" : "urn:jsonschema:Operation", 6482 | "properties" : { 6483 | "operation" : { 6484 | "type" : "string" 6485 | }, 6486 | "a" : { 6487 | "type" : "number" 6488 | }, 6489 | "b" : { 6490 | "type" : "number" 6491 | } 6492 | } 6493 | } 6494 | """; 6495 | var asyncToolRegistration = new McpServerFeatures.AsyncToolRegistration( 6496 | new Tool("calculator", "Basic calculator", schema), 6497 | arguments -> { 6498 | // Tool implementation 6499 | return Mono.just(new CallToolResult(result, false)); 6500 | } 6501 | ); 6502 | ``` 6503 | </Tab> 6504 | </Tabs> 6505 | 6506 | ### Resource Registration 6507 | 6508 | <Tabs> 6509 | <Tab title="Sync"> 6510 | ```java 6511 | // Sync resource registration 6512 | var syncResourceRegistration = new McpServerFeatures.SyncResourceRegistration( 6513 | new Resource("custom://resource", "name", "description", "mime-type", null), 6514 | request -> { 6515 | // Resource read implementation 6516 | return new ReadResourceResult(contents); 6517 | } 6518 | ); 6519 | ``` 6520 | </Tab> 6521 | 6522 | <Tab title="Async"> 6523 | ```java 6524 | // Async resource registration 6525 | var asyncResourceRegistration = new McpServerFeatures.AsyncResourceRegistration( 6526 | new Resource("custom://resource", "name", "description", "mime-type", null), 6527 | request -> { 6528 | // Resource read implementation 6529 | return Mono.just(new ReadResourceResult(contents)); 6530 | } 6531 | ); 6532 | ``` 6533 | </Tab> 6534 | </Tabs> 6535 | 6536 | ### Prompt Registration 6537 | 6538 | <Tabs> 6539 | <Tab title="Sync"> 6540 | ```java 6541 | // Sync prompt registration 6542 | var syncPromptRegistration = new McpServerFeatures.SyncPromptRegistration( 6543 | new Prompt("greeting", "description", List.of( 6544 | new PromptArgument("name", "description", true) 6545 | )), 6546 | request -> { 6547 | // Prompt implementation 6548 | return new GetPromptResult(description, messages); 6549 | } 6550 | ); 6551 | ``` 6552 | </Tab> 6553 | 6554 | <Tab title="Async"> 6555 | ```java 6556 | // Async prompt registration 6557 | var asyncPromptRegistration = new McpServerFeatures.AsyncPromptRegistration( 6558 | new Prompt("greeting", "description", List.of( 6559 | new PromptArgument("name", "description", true) 6560 | )), 6561 | request -> { 6562 | // Prompt implementation 6563 | return Mono.just(new GetPromptResult(description, messages)); 6564 | } 6565 | ); 6566 | ``` 6567 | </Tab> 6568 | </Tabs> 6569 | 6570 | ## Error Handling 6571 | 6572 | The SDK provides comprehensive error handling through the McpError class, covering protocol compatibility, transport communication, JSON-RPC messaging, tool execution, resource management, prompt handling, timeouts, and connection issues. This unified error handling approach ensures consistent and reliable error management across both synchronous and asynchronous operations. 6573 | 6574 | 6575 | # Building MCP with LLMs 6576 | Source: https://modelcontextprotocol.io/tutorials/building-mcp-with-llms 6577 | 6578 | Speed up your MCP development using LLMs such as Claude! 6579 | 6580 | This guide will help you use LLMs to help you build custom Model Context Protocol (MCP) servers and clients. We'll be focusing on Claude for this tutorial, but you can do this with any frontier LLM. 6581 | 6582 | ## Preparing the documentation 6583 | 6584 | Before starting, gather the necessary documentation to help Claude understand MCP: 6585 | 6586 | 1. Visit [https://modelcontextprotocol.io/llms-full.txt](https://modelcontextprotocol.io/llms-full.txt) and copy the full documentation text 6587 | 2. Navigate to either the [MCP TypeScript SDK](https://github.com/modelcontextprotocol/typescript-sdk) or [Python SDK repository](https://github.com/modelcontextprotocol/python-sdk) 6588 | 3. Copy the README files and other relevant documentation 6589 | 4. Paste these documents into your conversation with Claude 6590 | 6591 | ## Describing your server 6592 | 6593 | Once you've provided the documentation, clearly describe to Claude what kind of server you want to build. Be specific about: 6594 | 6595 | * What resources your server will expose 6596 | * What tools it will provide 6597 | * Any prompts it should offer 6598 | * What external systems it needs to interact with 6599 | 6600 | For example: 6601 | 6602 | ``` 6603 | Build an MCP server that: 6604 | - Connects to my company's PostgreSQL database 6605 | - Exposes table schemas as resources 6606 | - Provides tools for running read-only SQL queries 6607 | - Includes prompts for common data analysis tasks 6608 | ``` 6609 | 6610 | ## Working with Claude 6611 | 6612 | When working with Claude on MCP servers: 6613 | 6614 | 1. Start with the core functionality first, then iterate to add more features 6615 | 2. Ask Claude to explain any parts of the code you don't understand 6616 | 3. Request modifications or improvements as needed 6617 | 4. Have Claude help you test the server and handle edge cases 6618 | 6619 | Claude can help implement all the key MCP features: 6620 | 6621 | * Resource management and exposure 6622 | * Tool definitions and implementations 6623 | * Prompt templates and handlers 6624 | * Error handling and logging 6625 | * Connection and transport setup 6626 | 6627 | ## Best practices 6628 | 6629 | When building MCP servers with Claude: 6630 | 6631 | * Break down complex servers into smaller pieces 6632 | * Test each component thoroughly before moving on 6633 | * Keep security in mind - validate inputs and limit access appropriately 6634 | * Document your code well for future maintenance 6635 | * Follow MCP protocol specifications carefully 6636 | 6637 | ## Next steps 6638 | 6639 | After Claude helps you build your server: 6640 | 6641 | 1. Review the generated code carefully 6642 | 2. Test the server with the MCP Inspector tool 6643 | 3. Connect it to Claude.app or other MCP clients 6644 | 4. Iterate based on real usage and feedback 6645 | 6646 | Remember that Claude can help you modify and improve your server as requirements change over time. 6647 | 6648 | Need more guidance? Just ask Claude specific questions about implementing MCP features or troubleshooting issues that arise. 6649 | 6650 | ```