#
tokens: 32228/50000 2/234 files (page 8/9)
lines: off (toggle) GitHub
raw markdown copy
This is page 8 of 9. Use http://codebase.md/getzep/graphiti?lines=false&page={x} to view the full context.

# Directory Structure

```
├── .env.example
├── .github
│   ├── dependabot.yml
│   ├── ISSUE_TEMPLATE
│   │   └── bug_report.md
│   ├── pull_request_template.md
│   ├── secret_scanning.yml
│   └── workflows
│       ├── ai-moderator.yml
│       ├── cla.yml
│       ├── claude-code-review-manual.yml
│       ├── claude-code-review.yml
│       ├── claude.yml
│       ├── codeql.yml
│       ├── daily_issue_maintenance.yml
│       ├── issue-triage.yml
│       ├── lint.yml
│       ├── release-graphiti-core.yml
│       ├── release-mcp-server.yml
│       ├── release-server-container.yml
│       ├── typecheck.yml
│       └── unit_tests.yml
├── .gitignore
├── AGENTS.md
├── CLAUDE.md
├── CODE_OF_CONDUCT.md
├── conftest.py
├── CONTRIBUTING.md
├── depot.json
├── docker-compose.test.yml
├── docker-compose.yml
├── Dockerfile
├── ellipsis.yaml
├── examples
│   ├── azure-openai
│   │   ├── .env.example
│   │   ├── azure_openai_neo4j.py
│   │   └── README.md
│   ├── data
│   │   └── manybirds_products.json
│   ├── ecommerce
│   │   ├── runner.ipynb
│   │   └── runner.py
│   ├── langgraph-agent
│   │   ├── agent.ipynb
│   │   └── tinybirds-jess.png
│   ├── opentelemetry
│   │   ├── .env.example
│   │   ├── otel_stdout_example.py
│   │   ├── pyproject.toml
│   │   ├── README.md
│   │   └── uv.lock
│   ├── podcast
│   │   ├── podcast_runner.py
│   │   ├── podcast_transcript.txt
│   │   └── transcript_parser.py
│   ├── quickstart
│   │   ├── quickstart_falkordb.py
│   │   ├── quickstart_neo4j.py
│   │   ├── quickstart_neptune.py
│   │   ├── README.md
│   │   └── requirements.txt
│   └── wizard_of_oz
│       ├── parser.py
│       ├── runner.py
│       └── woo.txt
├── graphiti_core
│   ├── __init__.py
│   ├── cross_encoder
│   │   ├── __init__.py
│   │   ├── bge_reranker_client.py
│   │   ├── client.py
│   │   ├── gemini_reranker_client.py
│   │   └── openai_reranker_client.py
│   ├── decorators.py
│   ├── driver
│   │   ├── __init__.py
│   │   ├── driver.py
│   │   ├── falkordb_driver.py
│   │   ├── graph_operations
│   │   │   └── graph_operations.py
│   │   ├── kuzu_driver.py
│   │   ├── neo4j_driver.py
│   │   ├── neptune_driver.py
│   │   └── search_interface
│   │       └── search_interface.py
│   ├── edges.py
│   ├── embedder
│   │   ├── __init__.py
│   │   ├── azure_openai.py
│   │   ├── client.py
│   │   ├── gemini.py
│   │   ├── openai.py
│   │   └── voyage.py
│   ├── errors.py
│   ├── graph_queries.py
│   ├── graphiti_types.py
│   ├── graphiti.py
│   ├── helpers.py
│   ├── llm_client
│   │   ├── __init__.py
│   │   ├── anthropic_client.py
│   │   ├── azure_openai_client.py
│   │   ├── client.py
│   │   ├── config.py
│   │   ├── errors.py
│   │   ├── gemini_client.py
│   │   ├── groq_client.py
│   │   ├── openai_base_client.py
│   │   ├── openai_client.py
│   │   ├── openai_generic_client.py
│   │   └── utils.py
│   ├── migrations
│   │   └── __init__.py
│   ├── models
│   │   ├── __init__.py
│   │   ├── edges
│   │   │   ├── __init__.py
│   │   │   └── edge_db_queries.py
│   │   └── nodes
│   │       ├── __init__.py
│   │       └── node_db_queries.py
│   ├── nodes.py
│   ├── prompts
│   │   ├── __init__.py
│   │   ├── dedupe_edges.py
│   │   ├── dedupe_nodes.py
│   │   ├── eval.py
│   │   ├── extract_edge_dates.py
│   │   ├── extract_edges.py
│   │   ├── extract_nodes.py
│   │   ├── invalidate_edges.py
│   │   ├── lib.py
│   │   ├── models.py
│   │   ├── prompt_helpers.py
│   │   ├── snippets.py
│   │   └── summarize_nodes.py
│   ├── py.typed
│   ├── search
│   │   ├── __init__.py
│   │   ├── search_config_recipes.py
│   │   ├── search_config.py
│   │   ├── search_filters.py
│   │   ├── search_helpers.py
│   │   ├── search_utils.py
│   │   └── search.py
│   ├── telemetry
│   │   ├── __init__.py
│   │   └── telemetry.py
│   ├── tracer.py
│   └── utils
│       ├── __init__.py
│       ├── bulk_utils.py
│       ├── datetime_utils.py
│       ├── maintenance
│       │   ├── __init__.py
│       │   ├── community_operations.py
│       │   ├── dedup_helpers.py
│       │   ├── edge_operations.py
│       │   ├── graph_data_operations.py
│       │   ├── node_operations.py
│       │   └── temporal_operations.py
│       ├── ontology_utils
│       │   └── entity_types_utils.py
│       └── text_utils.py
├── images
│   ├── arxiv-screenshot.png
│   ├── graphiti-graph-intro.gif
│   ├── graphiti-intro-slides-stock-2.gif
│   └── simple_graph.svg
├── LICENSE
├── Makefile
├── mcp_server
│   ├── .env.example
│   ├── .python-version
│   ├── config
│   │   ├── config-docker-falkordb-combined.yaml
│   │   ├── config-docker-falkordb.yaml
│   │   ├── config-docker-neo4j.yaml
│   │   ├── config.yaml
│   │   └── mcp_config_stdio_example.json
│   ├── docker
│   │   ├── build-standalone.sh
│   │   ├── build-with-version.sh
│   │   ├── docker-compose-falkordb.yml
│   │   ├── docker-compose-neo4j.yml
│   │   ├── docker-compose.yml
│   │   ├── Dockerfile
│   │   ├── Dockerfile.standalone
│   │   ├── github-actions-example.yml
│   │   ├── README-falkordb-combined.md
│   │   └── README.md
│   ├── docs
│   │   └── cursor_rules.md
│   ├── main.py
│   ├── pyproject.toml
│   ├── pytest.ini
│   ├── README.md
│   ├── src
│   │   ├── __init__.py
│   │   ├── config
│   │   │   ├── __init__.py
│   │   │   └── schema.py
│   │   ├── graphiti_mcp_server.py
│   │   ├── models
│   │   │   ├── __init__.py
│   │   │   ├── entity_types.py
│   │   │   └── response_types.py
│   │   ├── services
│   │   │   ├── __init__.py
│   │   │   ├── factories.py
│   │   │   └── queue_service.py
│   │   └── utils
│   │       ├── __init__.py
│   │       ├── formatting.py
│   │       └── utils.py
│   ├── tests
│   │   ├── __init__.py
│   │   ├── conftest.py
│   │   ├── pytest.ini
│   │   ├── README.md
│   │   ├── run_tests.py
│   │   ├── test_async_operations.py
│   │   ├── test_comprehensive_integration.py
│   │   ├── test_configuration.py
│   │   ├── test_falkordb_integration.py
│   │   ├── test_fixtures.py
│   │   ├── test_http_integration.py
│   │   ├── test_integration.py
│   │   ├── test_mcp_integration.py
│   │   ├── test_mcp_transports.py
│   │   ├── test_stdio_simple.py
│   │   └── test_stress_load.py
│   └── uv.lock
├── OTEL_TRACING.md
├── py.typed
├── pyproject.toml
├── pytest.ini
├── README.md
├── SECURITY.md
├── server
│   ├── .env.example
│   ├── graph_service
│   │   ├── __init__.py
│   │   ├── config.py
│   │   ├── dto
│   │   │   ├── __init__.py
│   │   │   ├── common.py
│   │   │   ├── ingest.py
│   │   │   └── retrieve.py
│   │   ├── main.py
│   │   ├── routers
│   │   │   ├── __init__.py
│   │   │   ├── ingest.py
│   │   │   └── retrieve.py
│   │   └── zep_graphiti.py
│   ├── Makefile
│   ├── pyproject.toml
│   ├── README.md
│   └── uv.lock
├── signatures
│   └── version1
│       └── cla.json
├── tests
│   ├── cross_encoder
│   │   ├── test_bge_reranker_client_int.py
│   │   └── test_gemini_reranker_client.py
│   ├── driver
│   │   ├── __init__.py
│   │   └── test_falkordb_driver.py
│   ├── embedder
│   │   ├── embedder_fixtures.py
│   │   ├── test_gemini.py
│   │   ├── test_openai.py
│   │   └── test_voyage.py
│   ├── evals
│   │   ├── data
│   │   │   └── longmemeval_data
│   │   │       ├── longmemeval_oracle.json
│   │   │       └── README.md
│   │   ├── eval_cli.py
│   │   ├── eval_e2e_graph_building.py
│   │   ├── pytest.ini
│   │   └── utils.py
│   ├── helpers_test.py
│   ├── llm_client
│   │   ├── test_anthropic_client_int.py
│   │   ├── test_anthropic_client.py
│   │   ├── test_azure_openai_client.py
│   │   ├── test_client.py
│   │   ├── test_errors.py
│   │   └── test_gemini_client.py
│   ├── test_edge_int.py
│   ├── test_entity_exclusion_int.py
│   ├── test_graphiti_int.py
│   ├── test_graphiti_mock.py
│   ├── test_node_int.py
│   ├── test_text_utils.py
│   └── utils
│       ├── maintenance
│       │   ├── test_bulk_utils.py
│       │   ├── test_edge_operations.py
│       │   ├── test_node_operations.py
│       │   └── test_temporal_operations_int.py
│       └── search
│           └── search_utils_test.py
├── uv.lock
└── Zep-CLA.md
```

# Files

--------------------------------------------------------------------------------
/tests/test_graphiti_mock.py:
--------------------------------------------------------------------------------

```python
"""
Copyright 2024, Zep Software, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from datetime import datetime, timedelta
from unittest.mock import Mock

import numpy as np
import pytest

from graphiti_core.cross_encoder.client import CrossEncoderClient
from graphiti_core.edges import CommunityEdge, EntityEdge, EpisodicEdge
from graphiti_core.graphiti import Graphiti
from graphiti_core.llm_client import LLMClient
from graphiti_core.nodes import CommunityNode, EntityNode, EpisodeType, EpisodicNode
from graphiti_core.search.search_filters import ComparisonOperator, DateFilter, SearchFilters
from graphiti_core.search.search_utils import (
    community_fulltext_search,
    community_similarity_search,
    edge_bfs_search,
    edge_fulltext_search,
    edge_similarity_search,
    episode_fulltext_search,
    episode_mentions_reranker,
    get_communities_by_nodes,
    get_edge_invalidation_candidates,
    get_embeddings_for_communities,
    get_embeddings_for_edges,
    get_embeddings_for_nodes,
    get_mentioned_nodes,
    get_relevant_edges,
    get_relevant_nodes,
    node_bfs_search,
    node_distance_reranker,
    node_fulltext_search,
    node_similarity_search,
)
from graphiti_core.utils.bulk_utils import add_nodes_and_edges_bulk
from graphiti_core.utils.maintenance.community_operations import (
    determine_entity_community,
    get_community_clusters,
    remove_communities,
)
from graphiti_core.utils.maintenance.edge_operations import filter_existing_duplicate_of_edges
from tests.helpers_test import (
    GraphProvider,
    assert_entity_edge_equals,
    assert_entity_node_equals,
    assert_episodic_edge_equals,
    assert_episodic_node_equals,
    get_edge_count,
    get_node_count,
    group_id,
    group_id_2,
)

pytest_plugins = ('pytest_asyncio',)


@pytest.fixture
def mock_llm_client():
    """Create a mock LLM"""
    mock_llm = Mock(spec=LLMClient)
    mock_llm.config = Mock()
    mock_llm.model = 'test-model'
    mock_llm.small_model = 'test-small-model'
    mock_llm.temperature = 0.0
    mock_llm.max_tokens = 1000
    mock_llm.cache_enabled = False
    mock_llm.cache_dir = None

    # Mock the public method that's actually called
    mock_llm.generate_response = Mock()
    mock_llm.generate_response.return_value = {
        'tool_calls': [
            {
                'name': 'extract_entities',
                'arguments': {'entities': [{'entity': 'test_entity', 'entity_type': 'test_type'}]},
            }
        ]
    }

    return mock_llm


@pytest.fixture
def mock_cross_encoder_client():
    """Create a mock LLM"""
    mock_llm = Mock(spec=CrossEncoderClient)
    mock_llm.config = Mock()

    # Mock the public method that's actually called
    mock_llm.rerank = Mock()
    mock_llm.rerank.return_value = {
        'tool_calls': [
            {
                'name': 'extract_entities',
                'arguments': {'entities': [{'entity': 'test_entity', 'entity_type': 'test_type'}]},
            }
        ]
    }

    return mock_llm


@pytest.mark.asyncio
async def test_add_bulk(graph_driver, mock_llm_client, mock_embedder, mock_cross_encoder_client):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as test fails on FalkorDB')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )

    await graphiti.build_indices_and_constraints()

    now = datetime.now()

    # Create episodic nodes
    episode_node_1 = EpisodicNode(
        name='test_episode',
        group_id=group_id,
        labels=[],
        created_at=now,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Alice likes Bob',
        valid_at=now,
        entity_edges=[],  # Filled in later
    )
    episode_node_2 = EpisodicNode(
        name='test_episode_2',
        group_id=group_id,
        labels=[],
        created_at=now,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Bob adores Alice',
        valid_at=now,
        entity_edges=[],  # Filled in later
    )

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        group_id=group_id,
        labels=['Entity', 'Person'],
        created_at=now,
        summary='test_entity_1 summary',
        attributes={'age': 30, 'location': 'New York'},
    )
    await entity_node_1.generate_name_embedding(mock_embedder)

    entity_node_2 = EntityNode(
        name='test_entity_2',
        group_id=group_id,
        labels=['Entity', 'Person2'],
        created_at=now,
        summary='test_entity_2 summary',
        attributes={'age': 25, 'location': 'Los Angeles'},
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    entity_node_3 = EntityNode(
        name='test_entity_3',
        group_id=group_id,
        labels=['Entity', 'City', 'Location'],
        created_at=now,
        summary='test_entity_3 summary',
        attributes={'age': 25, 'location': 'Los Angeles'},
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    entity_node_4 = EntityNode(
        name='test_entity_4',
        group_id=group_id,
        labels=['Entity'],
        created_at=now,
        summary='test_entity_4 summary',
        attributes={'age': 25, 'location': 'Los Angeles'},
    )
    await entity_node_4.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        created_at=now,
        name='likes',
        fact='test_entity_1 relates to test_entity_2',
        episodes=[],
        expired_at=now,
        valid_at=now,
        invalid_at=now,
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)

    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_3.uuid,
        target_node_uuid=entity_node_4.uuid,
        created_at=now,
        name='relates_to',
        fact='test_entity_3 relates to test_entity_4',
        episodes=[],
        expired_at=now,
        valid_at=now,
        invalid_at=now,
        group_id=group_id,
    )
    await entity_edge_2.generate_embedding(mock_embedder)

    # Create episodic to entity edges
    episodic_edge_1 = EpisodicEdge(
        source_node_uuid=episode_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=now,
        group_id=group_id,
    )
    episodic_edge_2 = EpisodicEdge(
        source_node_uuid=episode_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        created_at=now,
        group_id=group_id,
    )
    episodic_edge_3 = EpisodicEdge(
        source_node_uuid=episode_node_2.uuid,
        target_node_uuid=entity_node_3.uuid,
        created_at=now,
        group_id=group_id,
    )
    episodic_edge_4 = EpisodicEdge(
        source_node_uuid=episode_node_2.uuid,
        target_node_uuid=entity_node_4.uuid,
        created_at=now,
        group_id=group_id,
    )

    # Cross reference the ids
    episode_node_1.entity_edges = [entity_edge_1.uuid]
    episode_node_2.entity_edges = [entity_edge_2.uuid]
    entity_edge_1.episodes = [episode_node_1.uuid, episode_node_2.uuid]
    entity_edge_2.episodes = [episode_node_2.uuid]

    # Test add bulk
    await add_nodes_and_edges_bulk(
        graph_driver,
        [episode_node_1, episode_node_2],
        [episodic_edge_1, episodic_edge_2, episodic_edge_3, episodic_edge_4],
        [entity_node_1, entity_node_2, entity_node_3, entity_node_4],
        [entity_edge_1, entity_edge_2],
        mock_embedder,
    )

    node_ids = [
        episode_node_1.uuid,
        episode_node_2.uuid,
        entity_node_1.uuid,
        entity_node_2.uuid,
        entity_node_3.uuid,
        entity_node_4.uuid,
    ]
    edge_ids = [
        episodic_edge_1.uuid,
        episodic_edge_2.uuid,
        episodic_edge_3.uuid,
        episodic_edge_4.uuid,
        entity_edge_1.uuid,
        entity_edge_2.uuid,
    ]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == len(node_ids)
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == len(edge_ids)

    # Test episodic nodes
    retrieved_episode = await EpisodicNode.get_by_uuid(graph_driver, episode_node_1.uuid)
    await assert_episodic_node_equals(retrieved_episode, episode_node_1)

    retrieved_episode = await EpisodicNode.get_by_uuid(graph_driver, episode_node_2.uuid)
    await assert_episodic_node_equals(retrieved_episode, episode_node_2)

    # Test entity nodes
    retrieved_entity_node = await EntityNode.get_by_uuid(graph_driver, entity_node_1.uuid)
    await assert_entity_node_equals(graph_driver, retrieved_entity_node, entity_node_1)

    retrieved_entity_node = await EntityNode.get_by_uuid(graph_driver, entity_node_2.uuid)
    await assert_entity_node_equals(graph_driver, retrieved_entity_node, entity_node_2)

    retrieved_entity_node = await EntityNode.get_by_uuid(graph_driver, entity_node_3.uuid)
    await assert_entity_node_equals(graph_driver, retrieved_entity_node, entity_node_3)

    retrieved_entity_node = await EntityNode.get_by_uuid(graph_driver, entity_node_4.uuid)
    await assert_entity_node_equals(graph_driver, retrieved_entity_node, entity_node_4)

    # Test episodic edges
    retrieved_episode_edge = await EpisodicEdge.get_by_uuid(graph_driver, episodic_edge_1.uuid)
    await assert_episodic_edge_equals(retrieved_episode_edge, episodic_edge_1)

    retrieved_episode_edge = await EpisodicEdge.get_by_uuid(graph_driver, episodic_edge_2.uuid)
    await assert_episodic_edge_equals(retrieved_episode_edge, episodic_edge_2)

    retrieved_episode_edge = await EpisodicEdge.get_by_uuid(graph_driver, episodic_edge_3.uuid)
    await assert_episodic_edge_equals(retrieved_episode_edge, episodic_edge_3)

    retrieved_episode_edge = await EpisodicEdge.get_by_uuid(graph_driver, episodic_edge_4.uuid)
    await assert_episodic_edge_equals(retrieved_episode_edge, episodic_edge_4)

    # Test entity edges
    retrieved_entity_edge = await EntityEdge.get_by_uuid(graph_driver, entity_edge_1.uuid)
    await assert_entity_edge_equals(graph_driver, retrieved_entity_edge, entity_edge_1)

    retrieved_entity_edge = await EntityEdge.get_by_uuid(graph_driver, entity_edge_2.uuid)
    await assert_entity_edge_equals(graph_driver, retrieved_entity_edge, entity_edge_2)


@pytest.mark.asyncio
async def test_remove_episode(
    graph_driver, mock_llm_client, mock_embedder, mock_cross_encoder_client
):
    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )

    await graphiti.build_indices_and_constraints()

    now = datetime.now()

    # Create episodic nodes
    episode_node = EpisodicNode(
        name='test_episode',
        group_id=group_id,
        labels=[],
        created_at=now,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Alice likes Bob',
        valid_at=now,
        entity_edges=[],  # Filled in later
    )

    # Create entity nodes
    alice_node = EntityNode(
        name='Alice',
        group_id=group_id,
        labels=['Entity', 'Person'],
        created_at=now,
        summary='Alice summary',
        attributes={'age': 30, 'location': 'New York'},
    )
    await alice_node.generate_name_embedding(mock_embedder)

    bob_node = EntityNode(
        name='Bob',
        group_id=group_id,
        labels=['Entity', 'Person2'],
        created_at=now,
        summary='Bob summary',
        attributes={'age': 25, 'location': 'Los Angeles'},
    )
    await bob_node.generate_name_embedding(mock_embedder)

    # Create entity to entity edge
    entity_edge = EntityEdge(
        source_node_uuid=alice_node.uuid,
        target_node_uuid=bob_node.uuid,
        created_at=now,
        name='likes',
        fact='Alice likes Bob',
        episodes=[],
        expired_at=now,
        valid_at=now,
        invalid_at=now,
        group_id=group_id,
    )
    await entity_edge.generate_embedding(mock_embedder)

    # Create episodic to entity edges
    episodic_alice_edge = EpisodicEdge(
        source_node_uuid=episode_node.uuid,
        target_node_uuid=alice_node.uuid,
        created_at=now,
        group_id=group_id,
    )
    episodic_bob_edge = EpisodicEdge(
        source_node_uuid=episode_node.uuid,
        target_node_uuid=bob_node.uuid,
        created_at=now,
        group_id=group_id,
    )

    # Cross reference the ids
    episode_node.entity_edges = [entity_edge.uuid]
    entity_edge.episodes = [episode_node.uuid]

    # Test add bulk
    await add_nodes_and_edges_bulk(
        graph_driver,
        [episode_node],
        [episodic_alice_edge, episodic_bob_edge],
        [alice_node, bob_node],
        [entity_edge],
        mock_embedder,
    )

    node_ids = [episode_node.uuid, alice_node.uuid, bob_node.uuid]
    edge_ids = [episodic_alice_edge.uuid, episodic_bob_edge.uuid, entity_edge.uuid]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 3
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == 3

    # Test remove episode
    await graphiti.remove_episode(episode_node.uuid)
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 0
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == 0

    # Test add bulk again
    await add_nodes_and_edges_bulk(
        graph_driver,
        [episode_node],
        [episodic_alice_edge, episodic_bob_edge],
        [alice_node, bob_node],
        [entity_edge],
        mock_embedder,
    )
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 3
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == 3


@pytest.mark.asyncio
async def test_graphiti_retrieve_episodes(
    graph_driver, mock_llm_client, mock_embedder, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as test fails on FalkorDB')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )

    await graphiti.build_indices_and_constraints()

    now = datetime.now()
    valid_at_1 = now - timedelta(days=2)
    valid_at_2 = now - timedelta(days=4)
    valid_at_3 = now - timedelta(days=6)

    # Create episodic nodes
    episode_node_1 = EpisodicNode(
        name='test_episode_1',
        labels=[],
        created_at=now,
        valid_at=valid_at_1,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Test message 1',
        entity_edges=[],
        group_id=group_id,
    )
    episode_node_2 = EpisodicNode(
        name='test_episode_2',
        labels=[],
        created_at=now,
        valid_at=valid_at_2,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Test message 2',
        entity_edges=[],
        group_id=group_id,
    )
    episode_node_3 = EpisodicNode(
        name='test_episode_3',
        labels=[],
        created_at=now,
        valid_at=valid_at_3,
        source=EpisodeType.message,
        source_description='conversation message',
        content='Test message 3',
        entity_edges=[],
        group_id=group_id,
    )

    # Save the nodes
    await episode_node_1.save(graph_driver)
    await episode_node_2.save(graph_driver)
    await episode_node_3.save(graph_driver)

    node_ids = [episode_node_1.uuid, episode_node_2.uuid, episode_node_3.uuid]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 3

    # Retrieve episodes
    query_time = now - timedelta(days=3)
    episodes = await graphiti.retrieve_episodes(
        query_time, last_n=5, group_ids=[group_id], source=EpisodeType.message
    )
    assert len(episodes) == 2
    assert episodes[0].name == episode_node_3.name
    assert episodes[1].name == episode_node_2.name


@pytest.mark.asyncio
async def test_filter_existing_duplicate_of_edges(graph_driver, mock_embedder):
    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)
    entity_node_4 = EntityNode(
        name='test_entity_4',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_4.generate_name_embedding(mock_embedder)

    # Save the nodes
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_node_4.save(graph_driver)

    node_ids = [entity_node_1.uuid, entity_node_2.uuid, entity_node_3.uuid, entity_node_4.uuid]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 4

    # Create duplicate entity edge
    entity_edge = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='IS_DUPLICATE_OF',
        fact='test_entity_1 is a duplicate of test_entity_2',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge.generate_embedding(mock_embedder)
    await entity_edge.save(graph_driver)

    # Filter duplicate entity edges
    duplicate_node_tuples = [
        (entity_node_1, entity_node_2),
        (entity_node_3, entity_node_4),
    ]
    node_tuples = await filter_existing_duplicate_of_edges(graph_driver, duplicate_node_tuples)
    assert len(node_tuples) == 1
    assert [node.name for node in node_tuples[0]] == [entity_node_3.name, entity_node_4.name]


@pytest.mark.asyncio
async def test_determine_entity_community(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as test fails on FalkorDB')

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)
    entity_node_4 = EntityNode(
        name='test_entity_4',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_4.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_4.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_4',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)
    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_2.uuid,
        target_node_uuid=entity_node_4.uuid,
        name='RELATES_TO',
        fact='test_entity_2 relates to test_entity_4',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_2.generate_embedding(mock_embedder)
    entity_edge_3 = EntityEdge(
        source_node_uuid=entity_node_3.uuid,
        target_node_uuid=entity_node_4.uuid,
        name='RELATES_TO',
        fact='test_entity_3 relates to test_entity_4',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_3.generate_embedding(mock_embedder)

    # Create community nodes
    community_node_1 = CommunityNode(
        name='test_community_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_1.generate_name_embedding(mock_embedder)
    community_node_2 = CommunityNode(
        name='test_community_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_2.generate_name_embedding(mock_embedder)

    # Create community to entity edges
    community_edge_1 = CommunityEdge(
        source_node_uuid=community_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )
    community_edge_2 = CommunityEdge(
        source_node_uuid=community_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )
    community_edge_3 = CommunityEdge(
        source_node_uuid=community_node_2.uuid,
        target_node_uuid=entity_node_3.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_node_4.save(graph_driver)
    await community_node_1.save(graph_driver)
    await community_node_2.save(graph_driver)

    await entity_edge_1.save(graph_driver)
    await entity_edge_2.save(graph_driver)
    await entity_edge_3.save(graph_driver)
    await community_edge_1.save(graph_driver)
    await community_edge_2.save(graph_driver)
    await community_edge_3.save(graph_driver)

    node_ids = [
        entity_node_1.uuid,
        entity_node_2.uuid,
        entity_node_3.uuid,
        entity_node_4.uuid,
        community_node_1.uuid,
        community_node_2.uuid,
    ]
    edge_ids = [
        entity_edge_1.uuid,
        entity_edge_2.uuid,
        entity_edge_3.uuid,
        community_edge_1.uuid,
        community_edge_2.uuid,
        community_edge_3.uuid,
    ]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 6
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == 6

    # Determine entity community
    community, is_new = await determine_entity_community(graph_driver, entity_node_4)
    assert community.name == community_node_1.name
    assert is_new

    # Add entity to community edge
    community_edge_4 = CommunityEdge(
        source_node_uuid=community_node_1.uuid,
        target_node_uuid=entity_node_4.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_edge_4.save(graph_driver)

    # Determine entity community again
    community, is_new = await determine_entity_community(graph_driver, entity_node_4)
    assert community.name == community_node_1.name
    assert not is_new

    await remove_communities(graph_driver)
    node_count = await get_node_count(graph_driver, [community_node_1.uuid, community_node_2.uuid])
    assert node_count == 0


@pytest.mark.asyncio
async def test_get_community_clusters(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as test fails on FalkorDB')

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id_2,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)
    entity_node_4 = EntityNode(
        name='test_entity_4',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id_2,
    )
    await entity_node_4.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)
    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_3.uuid,
        target_node_uuid=entity_node_4.uuid,
        name='RELATES_TO',
        fact='test_entity_3 relates to test_entity_4',
        created_at=datetime.now(),
        group_id=group_id_2,
    )
    await entity_edge_2.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_node_4.save(graph_driver)
    await entity_edge_1.save(graph_driver)
    await entity_edge_2.save(graph_driver)

    node_ids = [entity_node_1.uuid, entity_node_2.uuid, entity_node_3.uuid, entity_node_4.uuid]
    edge_ids = [entity_edge_1.uuid, entity_edge_2.uuid]
    node_count = await get_node_count(graph_driver, node_ids)
    assert node_count == 4
    edge_count = await get_edge_count(graph_driver, edge_ids)
    assert edge_count == 2

    # Get community clusters
    clusters = await get_community_clusters(graph_driver, group_ids=None)
    assert len(clusters) == 2
    assert len(clusters[0]) == 2
    assert len(clusters[1]) == 2
    entities_1 = set([node.name for node in clusters[0]])
    entities_2 = set([node.name for node in clusters[1]])
    assert entities_1 == set(['test_entity_1', 'test_entity_2']) or entities_2 == set(
        ['test_entity_1', 'test_entity_2']
    )
    assert entities_1 == set(['test_entity_3', 'test_entity_4']) or entities_2 == set(
        ['test_entity_3', 'test_entity_4']
    )


@pytest.mark.asyncio
async def test_get_mentioned_nodes(graph_driver, mock_embedder):
    # Create episodic nodes
    episodic_node_1 = EpisodicNode(
        name='test_episodic_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='test_source_description',
        content='test_content',
        valid_at=datetime.now(),
    )
    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)

    # Create episodic to entity edges
    episodic_edge_1 = EpisodicEdge(
        source_node_uuid=episodic_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await episodic_node_1.save(graph_driver)
    await entity_node_1.save(graph_driver)
    await episodic_edge_1.save(graph_driver)

    # Get mentioned nodes
    mentioned_nodes = await get_mentioned_nodes(graph_driver, [episodic_node_1])
    assert len(mentioned_nodes) == 1
    assert mentioned_nodes[0].name == entity_node_1.name


@pytest.mark.asyncio
async def test_get_communities_by_nodes(graph_driver, mock_embedder):
    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)

    # Create community nodes
    community_node_1 = CommunityNode(
        name='test_community_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_1.generate_name_embedding(mock_embedder)

    # Create community to entity edges
    community_edge_1 = CommunityEdge(
        source_node_uuid=community_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await entity_node_1.save(graph_driver)
    await community_node_1.save(graph_driver)
    await community_edge_1.save(graph_driver)

    # Get communities by nodes
    communities = await get_communities_by_nodes(graph_driver, [entity_node_1])
    assert len(communities) == 1
    assert communities[0].name == community_node_1.name


@pytest.mark.asyncio
async def test_edge_fulltext_search(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.KUZU:
        pytest.skip('Skipping as fulltext indexing not supported for Kuzu')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    now = datetime.now()
    created_at = now
    expired_at = now + timedelta(days=6)
    valid_at = now + timedelta(days=2)
    invalid_at = now + timedelta(days=4)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=created_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        expired_at=expired_at,
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_edge_1.save(graph_driver)

    # Search for entity edges
    search_filters = SearchFilters(
        node_labels=['Entity'],
        edge_types=['RELATES_TO'],
        created_at=[
            [DateFilter(date=created_at, comparison_operator=ComparisonOperator.equals)],
        ],
        expired_at=[
            [DateFilter(date=now, comparison_operator=ComparisonOperator.not_equals)],
        ],
        valid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=1),
                    comparison_operator=ComparisonOperator.greater_than_equal,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.less_than_equal,
                )
            ],
        ],
        invalid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.greater_than,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=5), comparison_operator=ComparisonOperator.less_than
                )
            ],
        ],
    )
    edges = await edge_fulltext_search(
        graph_driver, 'test_entity_1 relates to test_entity_2', search_filters, group_ids=[group_id]
    )
    assert len(edges) == 1
    assert edges[0].name == entity_edge_1.name


@pytest.mark.asyncio
async def test_edge_similarity_search(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    now = datetime.now()
    created_at = now
    expired_at = now + timedelta(days=6)
    valid_at = now + timedelta(days=2)
    invalid_at = now + timedelta(days=4)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=created_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        expired_at=expired_at,
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_edge_1.save(graph_driver)

    # Search for entity edges
    search_filters = SearchFilters(
        node_labels=['Entity'],
        edge_types=['RELATES_TO'],
        created_at=[
            [DateFilter(date=created_at, comparison_operator=ComparisonOperator.equals)],
        ],
        expired_at=[
            [DateFilter(date=now, comparison_operator=ComparisonOperator.not_equals)],
        ],
        valid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=1),
                    comparison_operator=ComparisonOperator.greater_than_equal,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.less_than_equal,
                )
            ],
        ],
        invalid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.greater_than,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=5), comparison_operator=ComparisonOperator.less_than
                )
            ],
        ],
    )
    edges = await edge_similarity_search(
        graph_driver,
        entity_edge_1.fact_embedding,
        entity_node_1.uuid,
        entity_node_2.uuid,
        search_filters,
        group_ids=[group_id],
    )
    assert len(edges) == 1
    assert edges[0].name == entity_edge_1.name


@pytest.mark.asyncio
async def test_edge_bfs_search(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create episodic nodes
    episodic_node_1 = EpisodicNode(
        name='test_episodic_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='test_source_description',
        content='test_content',
        valid_at=datetime.now(),
    )

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    now = datetime.now()
    created_at = now
    expired_at = now + timedelta(days=6)
    valid_at = now + timedelta(days=2)
    invalid_at = now + timedelta(days=4)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=created_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        expired_at=expired_at,
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)
    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_2.uuid,
        target_node_uuid=entity_node_3.uuid,
        name='RELATES_TO',
        fact='test_entity_2 relates to test_entity_3',
        created_at=created_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        expired_at=expired_at,
        group_id=group_id,
    )
    await entity_edge_2.generate_embedding(mock_embedder)

    # Create episodic to entity edges
    episodic_edge_1 = EpisodicEdge(
        source_node_uuid=episodic_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await episodic_node_1.save(graph_driver)
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_edge_1.save(graph_driver)
    await entity_edge_2.save(graph_driver)
    await episodic_edge_1.save(graph_driver)

    # Search for entity edges
    search_filters = SearchFilters(
        node_labels=['Entity'],
        edge_types=['RELATES_TO'],
        created_at=[
            [DateFilter(date=created_at, comparison_operator=ComparisonOperator.equals)],
        ],
        expired_at=[
            [DateFilter(date=now, comparison_operator=ComparisonOperator.not_equals)],
        ],
        valid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=1),
                    comparison_operator=ComparisonOperator.greater_than_equal,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.less_than_equal,
                )
            ],
        ],
        invalid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.greater_than,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=5), comparison_operator=ComparisonOperator.less_than
                )
            ],
        ],
    )

    # Test bfs from episodic node

    edges = await edge_bfs_search(
        graph_driver,
        [episodic_node_1.uuid],
        1,
        search_filters,
        group_ids=[group_id],
    )
    assert len(edges) == 0

    edges = await edge_bfs_search(
        graph_driver,
        [episodic_node_1.uuid],
        2,
        search_filters,
        group_ids=[group_id],
    )
    edges_deduplicated = set({edge.uuid: edge.fact for edge in edges}.values())
    assert len(edges_deduplicated) == 1
    assert edges_deduplicated == {'test_entity_1 relates to test_entity_2'}

    edges = await edge_bfs_search(
        graph_driver,
        [episodic_node_1.uuid],
        3,
        search_filters,
        group_ids=[group_id],
    )
    edges_deduplicated = set({edge.uuid: edge.fact for edge in edges}.values())
    assert len(edges_deduplicated) == 2
    assert edges_deduplicated == {
        'test_entity_1 relates to test_entity_2',
        'test_entity_2 relates to test_entity_3',
    }

    # Test bfs from entity node

    edges = await edge_bfs_search(
        graph_driver,
        [entity_node_1.uuid],
        1,
        search_filters,
        group_ids=[group_id],
    )
    edges_deduplicated = set({edge.uuid: edge.fact for edge in edges}.values())
    assert len(edges_deduplicated) == 1
    assert edges_deduplicated == {'test_entity_1 relates to test_entity_2'}

    edges = await edge_bfs_search(
        graph_driver,
        [entity_node_1.uuid],
        2,
        search_filters,
        group_ids=[group_id],
    )
    edges_deduplicated = set({edge.uuid: edge.fact for edge in edges}.values())
    assert len(edges_deduplicated) == 2
    assert edges_deduplicated == {
        'test_entity_1 relates to test_entity_2',
        'test_entity_2 relates to test_entity_3',
    }


@pytest.mark.asyncio
async def test_node_fulltext_search(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.KUZU:
        pytest.skip('Skipping as fulltext indexing not supported for Kuzu')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        summary='Summary about Alice',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        summary='Summary about Bob',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)

    # Search for entity edges
    search_filters = SearchFilters(node_labels=['Entity'])
    nodes = await node_fulltext_search(
        graph_driver,
        'Alice',
        search_filters,
        group_ids=[group_id],
    )
    assert len(nodes) == 1
    assert nodes[0].name == entity_node_1.name


@pytest.mark.asyncio
async def test_node_similarity_search(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_alice',
        summary='Summary about Alice',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_bob',
        summary='Summary about Bob',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)

    # Search for entity edges
    search_filters = SearchFilters(node_labels=['Entity'])
    nodes = await node_similarity_search(
        graph_driver,
        entity_node_1.name_embedding,
        search_filters,
        group_ids=[group_id],
        min_score=0.9,
    )
    assert len(nodes) == 1
    assert nodes[0].name == entity_node_1.name


@pytest.mark.asyncio
async def test_node_bfs_search(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create episodic nodes
    episodic_node_1 = EpisodicNode(
        name='test_episodic_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='test_source_description',
        content='test_content',
        valid_at=datetime.now(),
    )

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)
    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_2.uuid,
        target_node_uuid=entity_node_3.uuid,
        name='RELATES_TO',
        fact='test_entity_2 relates to test_entity_3',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_2.generate_embedding(mock_embedder)

    # Create episodic to entity edges
    episodic_edge_1 = EpisodicEdge(
        source_node_uuid=episodic_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await episodic_node_1.save(graph_driver)
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_edge_1.save(graph_driver)
    await entity_edge_2.save(graph_driver)
    await episodic_edge_1.save(graph_driver)

    # Search for entity nodes
    search_filters = SearchFilters(
        node_labels=['Entity'],
    )

    # Test bfs from episodic node

    nodes = await node_bfs_search(
        graph_driver,
        [episodic_node_1.uuid],
        search_filters,
        1,
        group_ids=[group_id],
    )
    nodes_deduplicated = set({node.uuid: node.name for node in nodes}.values())
    assert len(nodes_deduplicated) == 1
    assert nodes_deduplicated == {'test_entity_1'}

    nodes = await node_bfs_search(
        graph_driver,
        [episodic_node_1.uuid],
        search_filters,
        2,
        group_ids=[group_id],
    )
    nodes_deduplicated = set({node.uuid: node.name for node in nodes}.values())
    assert len(nodes_deduplicated) == 2
    assert nodes_deduplicated == {'test_entity_1', 'test_entity_2'}

    # Test bfs from entity node

    nodes = await node_bfs_search(
        graph_driver,
        [entity_node_1.uuid],
        search_filters,
        1,
        group_ids=[group_id],
    )
    nodes_deduplicated = set({node.uuid: node.name for node in nodes}.values())
    assert len(nodes_deduplicated) == 1
    assert nodes_deduplicated == {'test_entity_2'}


@pytest.mark.asyncio
async def test_episode_fulltext_search(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.KUZU:
        pytest.skip('Skipping as fulltext indexing not supported for Kuzu')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create episodic nodes
    episodic_node_1 = EpisodicNode(
        name='test_episodic_1',
        content='test_content',
        created_at=datetime.now(),
        valid_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='Description about Alice',
    )
    episodic_node_2 = EpisodicNode(
        name='test_episodic_2',
        content='test_content_2',
        created_at=datetime.now(),
        valid_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='Description about Bob',
    )

    # Save the graph
    await episodic_node_1.save(graph_driver)
    await episodic_node_2.save(graph_driver)

    # Search for episodic nodes
    search_filters = SearchFilters(node_labels=['Episodic'])
    nodes = await episode_fulltext_search(
        graph_driver,
        'Alice',
        search_filters,
        group_ids=[group_id],
    )
    assert len(nodes) == 1
    assert nodes[0].name == episodic_node_1.name


@pytest.mark.asyncio
async def test_community_fulltext_search(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.KUZU:
        pytest.skip('Skipping as fulltext indexing not supported for Kuzu')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create community nodes
    community_node_1 = CommunityNode(
        name='Alice',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_1.generate_name_embedding(mock_embedder)
    community_node_2 = CommunityNode(
        name='Bob',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_2.generate_name_embedding(mock_embedder)

    # Save the graph
    await community_node_1.save(graph_driver)
    await community_node_2.save(graph_driver)

    # Search for community nodes
    nodes = await community_fulltext_search(
        graph_driver,
        'Alice',
        group_ids=[group_id],
    )
    assert len(nodes) == 1
    assert nodes[0].name == community_node_1.name


@pytest.mark.asyncio
async def test_community_similarity_search(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create community nodes
    community_node_1 = CommunityNode(
        name='Alice',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_1.generate_name_embedding(mock_embedder)
    community_node_2 = CommunityNode(
        name='Bob',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_2.generate_name_embedding(mock_embedder)

    # Save the graph
    await community_node_1.save(graph_driver)
    await community_node_2.save(graph_driver)

    # Search for community nodes
    nodes = await community_similarity_search(
        graph_driver,
        community_node_1.name_embedding,
        group_ids=[group_id],
        min_score=0.9,
    )
    assert len(nodes) == 1
    assert nodes[0].name == community_node_1.name


@pytest.mark.asyncio
async def test_get_relevant_nodes(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    if graph_driver.provider == GraphProvider.KUZU:
        pytest.skip('Skipping as tests fail on Kuzu')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='Alice',
        summary='Alice',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='Bob',
        summary='Bob',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='Alice Smith',
        summary='Alice Smith',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)

    # Search for entity nodes
    search_filters = SearchFilters(node_labels=['Entity'])
    nodes = (
        await get_relevant_nodes(
            graph_driver,
            [entity_node_1],
            search_filters,
            min_score=0.9,
        )
    )[0]
    assert len(nodes) == 2
    assert set({node.name for node in nodes}) == {entity_node_1.name, entity_node_3.name}


@pytest.mark.asyncio
async def test_get_relevant_edges_and_invalidation_candidates(
    graph_driver, mock_embedder, mock_llm_client, mock_cross_encoder_client
):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    graphiti = Graphiti(
        graph_driver=graph_driver,
        llm_client=mock_llm_client,
        embedder=mock_embedder,
        cross_encoder=mock_cross_encoder_client,
    )
    await graphiti.build_indices_and_constraints()

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        summary='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        summary='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        summary='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    now = datetime.now()
    created_at = now
    expired_at = now + timedelta(days=6)
    valid_at = now + timedelta(days=2)
    invalid_at = now + timedelta(days=4)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='Alice',
        created_at=created_at,
        expired_at=expired_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)
    entity_edge_2 = EntityEdge(
        source_node_uuid=entity_node_2.uuid,
        target_node_uuid=entity_node_3.uuid,
        name='RELATES_TO',
        fact='Bob',
        created_at=created_at,
        expired_at=expired_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        group_id=group_id,
    )
    await entity_edge_2.generate_embedding(mock_embedder)
    entity_edge_3 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_3.uuid,
        name='RELATES_TO',
        fact='Alice',
        created_at=created_at,
        expired_at=expired_at,
        valid_at=valid_at,
        invalid_at=invalid_at,
        group_id=group_id,
    )
    await entity_edge_3.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_edge_1.save(graph_driver)
    await entity_edge_2.save(graph_driver)
    await entity_edge_3.save(graph_driver)

    # Search for entity nodes
    search_filters = SearchFilters(
        node_labels=['Entity'],
        edge_types=['RELATES_TO'],
        created_at=[
            [DateFilter(date=created_at, comparison_operator=ComparisonOperator.equals)],
        ],
        expired_at=[
            [DateFilter(date=now, comparison_operator=ComparisonOperator.not_equals)],
        ],
        valid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=1),
                    comparison_operator=ComparisonOperator.greater_than_equal,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.less_than_equal,
                )
            ],
        ],
        invalid_at=[
            [
                DateFilter(
                    date=now + timedelta(days=3),
                    comparison_operator=ComparisonOperator.greater_than,
                )
            ],
            [
                DateFilter(
                    date=now + timedelta(days=5), comparison_operator=ComparisonOperator.less_than
                )
            ],
        ],
    )
    edges = (
        await get_relevant_edges(
            graph_driver,
            [entity_edge_1],
            search_filters,
            min_score=0.9,
        )
    )[0]
    assert len(edges) == 1
    assert set({edge.name for edge in edges}) == {entity_edge_1.name}

    edges = (
        await get_edge_invalidation_candidates(
            graph_driver,
            [entity_edge_1],
            search_filters,
            min_score=0.9,
        )
    )[0]
    assert len(edges) == 2
    assert set({edge.name for edge in edges}) == {entity_edge_1.name, entity_edge_3.name}


@pytest.mark.asyncio
async def test_node_distance_reranker(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)
    entity_node_3 = EntityNode(
        name='test_entity_3',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_3.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_node_3.save(graph_driver)
    await entity_edge_1.save(graph_driver)

    # Test reranker
    reranked_uuids, reranked_scores = await node_distance_reranker(
        graph_driver,
        [entity_node_2.uuid, entity_node_3.uuid],
        entity_node_1.uuid,
    )
    uuid_to_name = {
        entity_node_1.uuid: entity_node_1.name,
        entity_node_2.uuid: entity_node_2.name,
        entity_node_3.uuid: entity_node_3.name,
    }
    names = [uuid_to_name[uuid] for uuid in reranked_uuids]
    assert names == [entity_node_2.name, entity_node_3.name]
    assert np.allclose(reranked_scores, [1.0, 0.0])


@pytest.mark.asyncio
async def test_episode_mentions_reranker(graph_driver, mock_embedder):
    if graph_driver.provider == GraphProvider.FALKORDB:
        pytest.skip('Skipping as tests fail on Falkordb')

    # Create episodic nodes
    episodic_node_1 = EpisodicNode(
        name='test_episodic_1',
        content='test_content',
        created_at=datetime.now(),
        valid_at=datetime.now(),
        group_id=group_id,
        source=EpisodeType.message,
        source_description='Description about Alice',
    )

    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    # Create entity edges
    episodic_edge_1 = EpisodicEdge(
        source_node_uuid=episodic_node_1.uuid,
        target_node_uuid=entity_node_1.uuid,
        created_at=datetime.now(),
        group_id=group_id,
    )

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await episodic_node_1.save(graph_driver)
    await episodic_edge_1.save(graph_driver)

    # Test reranker
    reranked_uuids, reranked_scores = await episode_mentions_reranker(
        graph_driver,
        [[entity_node_1.uuid, entity_node_2.uuid]],
    )
    uuid_to_name = {entity_node_1.uuid: entity_node_1.name, entity_node_2.uuid: entity_node_2.name}
    names = [uuid_to_name[uuid] for uuid in reranked_uuids]
    assert names == [entity_node_1.name, entity_node_2.name]
    assert np.allclose(reranked_scores, [1.0, float('inf')])


@pytest.mark.asyncio
async def test_get_embeddings_for_edges(graph_driver, mock_embedder):
    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)
    entity_node_2 = EntityNode(
        name='test_entity_2',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_2.generate_name_embedding(mock_embedder)

    # Create entity edges
    entity_edge_1 = EntityEdge(
        source_node_uuid=entity_node_1.uuid,
        target_node_uuid=entity_node_2.uuid,
        name='RELATES_TO',
        fact='test_entity_1 relates to test_entity_2',
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_edge_1.generate_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)
    await entity_node_2.save(graph_driver)
    await entity_edge_1.save(graph_driver)

    # Get embeddings for edges
    embeddings = await get_embeddings_for_edges(graph_driver, [entity_edge_1])
    assert len(embeddings) == 1
    assert entity_edge_1.uuid in embeddings
    assert np.allclose(embeddings[entity_edge_1.uuid], entity_edge_1.fact_embedding)


@pytest.mark.asyncio
async def test_get_embeddings_for_nodes(graph_driver, mock_embedder):
    # Create entity nodes
    entity_node_1 = EntityNode(
        name='test_entity_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await entity_node_1.generate_name_embedding(mock_embedder)

    # Save the graph
    await entity_node_1.save(graph_driver)

    # Get embeddings for edges
    embeddings = await get_embeddings_for_nodes(graph_driver, [entity_node_1])
    assert len(embeddings) == 1
    assert entity_node_1.uuid in embeddings
    assert np.allclose(embeddings[entity_node_1.uuid], entity_node_1.name_embedding)


@pytest.mark.asyncio
async def test_get_embeddings_for_communities(graph_driver, mock_embedder):
    # Create community nodes
    community_node_1 = CommunityNode(
        name='test_community_1',
        labels=[],
        created_at=datetime.now(),
        group_id=group_id,
    )
    await community_node_1.generate_name_embedding(mock_embedder)

    # Save the graph
    await community_node_1.save(graph_driver)

    # Get embeddings for communities
    embeddings = await get_embeddings_for_communities(graph_driver, [community_node_1])
    assert len(embeddings) == 1
    assert community_node_1.uuid in embeddings
    assert np.allclose(embeddings[community_node_1.uuid], community_node_1.name_embedding)

```

--------------------------------------------------------------------------------
/graphiti_core/search/search_utils.py:
--------------------------------------------------------------------------------

```python
"""
Copyright 2024, Zep Software, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import logging
from collections import defaultdict
from time import time
from typing import Any

import numpy as np
from numpy._typing import NDArray
from typing_extensions import LiteralString

from graphiti_core.driver.driver import (
    GraphDriver,
    GraphProvider,
)
from graphiti_core.edges import EntityEdge, get_entity_edge_from_record
from graphiti_core.graph_queries import (
    get_nodes_query,
    get_relationships_query,
    get_vector_cosine_func_query,
)
from graphiti_core.helpers import (
    lucene_sanitize,
    normalize_l2,
    semaphore_gather,
)
from graphiti_core.models.edges.edge_db_queries import get_entity_edge_return_query
from graphiti_core.models.nodes.node_db_queries import (
    COMMUNITY_NODE_RETURN,
    EPISODIC_NODE_RETURN,
    get_entity_node_return_query,
)
from graphiti_core.nodes import (
    CommunityNode,
    EntityNode,
    EpisodicNode,
    get_community_node_from_record,
    get_entity_node_from_record,
    get_episodic_node_from_record,
)
from graphiti_core.search.search_filters import (
    SearchFilters,
    edge_search_filter_query_constructor,
    node_search_filter_query_constructor,
)

logger = logging.getLogger(__name__)

RELEVANT_SCHEMA_LIMIT = 10
DEFAULT_MIN_SCORE = 0.6
DEFAULT_MMR_LAMBDA = 0.5
MAX_SEARCH_DEPTH = 3
MAX_QUERY_LENGTH = 128


def calculate_cosine_similarity(vector1: list[float], vector2: list[float]) -> float:
    """
    Calculates the cosine similarity between two vectors using NumPy.
    """
    dot_product = np.dot(vector1, vector2)
    norm_vector1 = np.linalg.norm(vector1)
    norm_vector2 = np.linalg.norm(vector2)

    if norm_vector1 == 0 or norm_vector2 == 0:
        return 0  # Handle cases where one or both vectors are zero vectors

    return dot_product / (norm_vector1 * norm_vector2)


def fulltext_query(query: str, group_ids: list[str] | None, driver: GraphDriver):
    if driver.provider == GraphProvider.KUZU:
        # Kuzu only supports simple queries.
        if len(query.split(' ')) > MAX_QUERY_LENGTH:
            return ''
        return query
    elif driver.provider == GraphProvider.FALKORDB:
        return driver.build_fulltext_query(query, group_ids, MAX_QUERY_LENGTH)
    group_ids_filter_list = (
        [driver.fulltext_syntax + f'group_id:"{g}"' for g in group_ids]
        if group_ids is not None
        else []
    )
    group_ids_filter = ''
    for f in group_ids_filter_list:
        group_ids_filter += f if not group_ids_filter else f' OR {f}'

    group_ids_filter += ' AND ' if group_ids_filter else ''

    lucene_query = lucene_sanitize(query)
    # If the lucene query is too long return no query
    if len(lucene_query.split(' ')) + len(group_ids or '') >= MAX_QUERY_LENGTH:
        return ''

    full_query = group_ids_filter + '(' + lucene_query + ')'

    return full_query


async def get_episodes_by_mentions(
    driver: GraphDriver,
    nodes: list[EntityNode],
    edges: list[EntityEdge],
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[EpisodicNode]:
    episode_uuids: list[str] = []
    for edge in edges:
        episode_uuids.extend(edge.episodes)

    episodes = await EpisodicNode.get_by_uuids(driver, episode_uuids[:limit])

    return episodes


async def get_mentioned_nodes(
    driver: GraphDriver, episodes: list[EpisodicNode]
) -> list[EntityNode]:
    episode_uuids = [episode.uuid for episode in episodes]

    records, _, _ = await driver.execute_query(
        """
        MATCH (episode:Episodic)-[:MENTIONS]->(n:Entity)
        WHERE episode.uuid IN $uuids
        RETURN DISTINCT
        """
        + get_entity_node_return_query(driver.provider),
        uuids=episode_uuids,
        routing_='r',
    )

    nodes = [get_entity_node_from_record(record, driver.provider) for record in records]

    return nodes


async def get_communities_by_nodes(
    driver: GraphDriver, nodes: list[EntityNode]
) -> list[CommunityNode]:
    node_uuids = [node.uuid for node in nodes]

    records, _, _ = await driver.execute_query(
        """
        MATCH (c:Community)-[:HAS_MEMBER]->(m:Entity)
        WHERE m.uuid IN $uuids
        RETURN DISTINCT
        """
        + COMMUNITY_NODE_RETURN,
        uuids=node_uuids,
        routing_='r',
    )

    communities = [get_community_node_from_record(record) for record in records]

    return communities


async def edge_fulltext_search(
    driver: GraphDriver,
    query: str,
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
) -> list[EntityEdge]:
    if driver.search_interface:
        return await driver.search_interface.edge_fulltext_search(
            driver, query, search_filter, group_ids, limit
        )

    # fulltext search over facts
    fuzzy_query = fulltext_query(query, group_ids, driver)

    if fuzzy_query == '':
        return []

    match_query = """
    YIELD relationship AS rel, score
    MATCH (n:Entity)-[e:RELATES_TO {uuid: rel.uuid}]->(m:Entity)
    """
    if driver.provider == GraphProvider.KUZU:
        match_query = """
        YIELD node, score
        MATCH (n:Entity)-[:RELATES_TO]->(e:RelatesToNode_ {uuid: node.uuid})-[:RELATES_TO]->(m:Entity)
        """

    filter_queries, filter_params = edge_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('e.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    if driver.provider == GraphProvider.NEPTUNE:
        res = driver.run_aoss_query('edge_name_and_fact', query)  # pyright: ignore reportAttributeAccessIssue
        if res['hits']['total']['value'] > 0:
            input_ids = []
            for r in res['hits']['hits']:
                input_ids.append({'id': r['_source']['uuid'], 'score': r['_score']})

            # Match the edge ids and return the values
            query = (
                """
                                UNWIND $ids as id
                                MATCH (n:Entity)-[e:RELATES_TO]->(m:Entity)
                                WHERE e.group_id IN $group_ids 
                                AND id(e)=id 
                                """
                + filter_query
                + """
                AND id(e)=id
                WITH e, id.score as score, startNode(e) AS n, endNode(e) AS m
                RETURN
                    e.uuid AS uuid,
                    e.group_id AS group_id,
                    n.uuid AS source_node_uuid,
                    m.uuid AS target_node_uuid,
                    e.created_at AS created_at,
                    e.name AS name,
                    e.fact AS fact,
                    split(e.episodes, ",") AS episodes,
                    e.expired_at AS expired_at,
                    e.valid_at AS valid_at,
                    e.invalid_at AS invalid_at,
                    properties(e) AS attributes
                ORDER BY score DESC LIMIT $limit
                            """
            )

            records, _, _ = await driver.execute_query(
                query,
                query=fuzzy_query,
                ids=input_ids,
                limit=limit,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            get_relationships_query('edge_name_and_fact', limit=limit, provider=driver.provider)
            + match_query
            + filter_query
            + """
            WITH e, score, n, m
            RETURN
            """
            + get_entity_edge_return_query(driver.provider)
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query,
            query=fuzzy_query,
            limit=limit,
            routing_='r',
            **filter_params,
        )

    edges = [get_entity_edge_from_record(record, driver.provider) for record in records]

    return edges


async def edge_similarity_search(
    driver: GraphDriver,
    search_vector: list[float],
    source_node_uuid: str | None,
    target_node_uuid: str | None,
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit: int = RELEVANT_SCHEMA_LIMIT,
    min_score: float = DEFAULT_MIN_SCORE,
) -> list[EntityEdge]:
    if driver.search_interface:
        return await driver.search_interface.edge_similarity_search(
            driver,
            search_vector,
            source_node_uuid,
            target_node_uuid,
            search_filter,
            group_ids,
            limit,
            min_score,
        )

    match_query = """
        MATCH (n:Entity)-[e:RELATES_TO]->(m:Entity)
    """
    if driver.provider == GraphProvider.KUZU:
        match_query = """
            MATCH (n:Entity)-[:RELATES_TO]->(e:RelatesToNode_)-[:RELATES_TO]->(m:Entity)
        """

    filter_queries, filter_params = edge_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('e.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

        if source_node_uuid is not None:
            filter_params['source_uuid'] = source_node_uuid
            filter_queries.append('n.uuid = $source_uuid')

        if target_node_uuid is not None:
            filter_params['target_uuid'] = target_node_uuid
            filter_queries.append('m.uuid = $target_uuid')

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    search_vector_var = '$search_vector'
    if driver.provider == GraphProvider.KUZU:
        search_vector_var = f'CAST($search_vector AS FLOAT[{len(search_vector)}])'

    if driver.provider == GraphProvider.NEPTUNE:
        query = (
            """
                            MATCH (n:Entity)-[e:RELATES_TO]->(m:Entity)
                            """
            + filter_query
            + """
            RETURN DISTINCT id(e) as id, e.fact_embedding as embedding
            """
        )
        resp, header, _ = await driver.execute_query(
            query,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

        if len(resp) > 0:
            # Calculate Cosine similarity then return the edge ids
            input_ids = []
            for r in resp:
                if r['embedding']:
                    score = calculate_cosine_similarity(
                        search_vector, list(map(float, r['embedding'].split(',')))
                    )
                    if score > min_score:
                        input_ids.append({'id': r['id'], 'score': score})

            # Match the edge ides and return the values
            query = """
                UNWIND $ids as i
                MATCH ()-[r]->()
                WHERE id(r) = i.id
                RETURN
                    r.uuid AS uuid,
                    r.group_id AS group_id,
                    startNode(r).uuid AS source_node_uuid,
                    endNode(r).uuid AS target_node_uuid,
                    r.created_at AS created_at,
                    r.name AS name,
                    r.fact AS fact,
                    split(r.episodes, ",") AS episodes,
                    r.expired_at AS expired_at,
                    r.valid_at AS valid_at,
                    r.invalid_at AS invalid_at,
                    properties(r) AS attributes
                ORDER BY i.score DESC
                LIMIT $limit
                    """
            records, _, _ = await driver.execute_query(
                query,
                ids=input_ids,
                search_vector=search_vector,
                limit=limit,
                min_score=min_score,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            match_query
            + filter_query
            + """
            WITH DISTINCT e, n, m, """
            + get_vector_cosine_func_query('e.fact_embedding', search_vector_var, driver.provider)
            + """ AS score
            WHERE score > $min_score
            RETURN
            """
            + get_entity_edge_return_query(driver.provider)
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

    edges = [get_entity_edge_from_record(record, driver.provider) for record in records]

    return edges


async def edge_bfs_search(
    driver: GraphDriver,
    bfs_origin_node_uuids: list[str] | None,
    bfs_max_depth: int,
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[EntityEdge]:
    # vector similarity search over embedded facts
    if bfs_origin_node_uuids is None or len(bfs_origin_node_uuids) == 0:
        return []

    filter_queries, filter_params = edge_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('e.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    if driver.provider == GraphProvider.KUZU:
        # Kuzu stores entity edges twice with an intermediate node, so we need to match them
        # separately for the correct BFS depth.
        depth = bfs_max_depth * 2 - 1
        match_queries = [
            f"""
            UNWIND $bfs_origin_node_uuids AS origin_uuid
            MATCH path = (origin:Entity {{uuid: origin_uuid}})-[:RELATES_TO*1..{depth}]->(:RelatesToNode_)
            UNWIND nodes(path) AS relNode
            MATCH (n:Entity)-[:RELATES_TO]->(e:RelatesToNode_ {{uuid: relNode.uuid}})-[:RELATES_TO]->(m:Entity)
            """,
        ]
        if bfs_max_depth > 1:
            depth = (bfs_max_depth - 1) * 2 - 1
            match_queries.append(f"""
                UNWIND $bfs_origin_node_uuids AS origin_uuid
                MATCH path = (origin:Episodic {{uuid: origin_uuid}})-[:MENTIONS]->(:Entity)-[:RELATES_TO*1..{depth}]->(:RelatesToNode_)
                UNWIND nodes(path) AS relNode
                MATCH (n:Entity)-[:RELATES_TO]->(e:RelatesToNode_ {{uuid: relNode.uuid}})-[:RELATES_TO]->(m:Entity)
            """)

        records = []
        for match_query in match_queries:
            sub_records, _, _ = await driver.execute_query(
                match_query
                + filter_query
                + """
                RETURN DISTINCT
                """
                + get_entity_edge_return_query(driver.provider)
                + """
                LIMIT $limit
                """,
                bfs_origin_node_uuids=bfs_origin_node_uuids,
                limit=limit,
                routing_='r',
                **filter_params,
            )
            records.extend(sub_records)
    else:
        if driver.provider == GraphProvider.NEPTUNE:
            query = (
                f"""
                UNWIND $bfs_origin_node_uuids AS origin_uuid
                MATCH path = (origin {{uuid: origin_uuid}})-[:RELATES_TO|MENTIONS *1..{bfs_max_depth}]->(n:Entity)
                WHERE origin:Entity OR origin:Episodic
                UNWIND relationships(path) AS rel
                MATCH (n:Entity)-[e:RELATES_TO {{uuid: rel.uuid}}]-(m:Entity)
                """
                + filter_query
                + """
                RETURN DISTINCT
                    e.uuid AS uuid,
                    e.group_id AS group_id,
                    startNode(e).uuid AS source_node_uuid,
                    endNode(e).uuid AS target_node_uuid,
                    e.created_at AS created_at,
                    e.name AS name,
                    e.fact AS fact,
                    split(e.episodes, ',') AS episodes,
                    e.expired_at AS expired_at,
                    e.valid_at AS valid_at,
                    e.invalid_at AS invalid_at,
                    properties(e) AS attributes
                LIMIT $limit
                """
            )
        else:
            query = (
                f"""
                UNWIND $bfs_origin_node_uuids AS origin_uuid
                MATCH path = (origin {{uuid: origin_uuid}})-[:RELATES_TO|MENTIONS*1..{bfs_max_depth}]->(:Entity)
                UNWIND relationships(path) AS rel
                MATCH (n:Entity)-[e:RELATES_TO {{uuid: rel.uuid}}]-(m:Entity)
                """
                + filter_query
                + """
                RETURN DISTINCT
                """
                + get_entity_edge_return_query(driver.provider)
                + """
                LIMIT $limit
                """
            )

        records, _, _ = await driver.execute_query(
            query,
            bfs_origin_node_uuids=bfs_origin_node_uuids,
            depth=bfs_max_depth,
            limit=limit,
            routing_='r',
            **filter_params,
        )

    edges = [get_entity_edge_from_record(record, driver.provider) for record in records]

    return edges


async def node_fulltext_search(
    driver: GraphDriver,
    query: str,
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
) -> list[EntityNode]:
    if driver.search_interface:
        return await driver.search_interface.node_fulltext_search(
            driver, query, search_filter, group_ids, limit
        )

    # BM25 search to get top nodes
    fuzzy_query = fulltext_query(query, group_ids, driver)
    if fuzzy_query == '':
        return []

    filter_queries, filter_params = node_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('n.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    yield_query = 'YIELD node AS n, score'
    if driver.provider == GraphProvider.KUZU:
        yield_query = 'WITH node AS n, score'

    if driver.provider == GraphProvider.NEPTUNE:
        res = driver.run_aoss_query('node_name_and_summary', query, limit=limit)  # pyright: ignore reportAttributeAccessIssue
        if res['hits']['total']['value'] > 0:
            input_ids = []
            for r in res['hits']['hits']:
                input_ids.append({'id': r['_source']['uuid'], 'score': r['_score']})

            # Match the edge ides and return the values
            query = (
                """
                                UNWIND $ids as i
                                MATCH (n:Entity)
                                WHERE n.uuid=i.id
                                RETURN
                                """
                + get_entity_node_return_query(driver.provider)
                + """
                ORDER BY i.score DESC
                LIMIT $limit
                            """
            )
            records, _, _ = await driver.execute_query(
                query,
                ids=input_ids,
                query=fuzzy_query,
                limit=limit,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            get_nodes_query(
                'node_name_and_summary', '$query', limit=limit, provider=driver.provider
            )
            + yield_query
            + filter_query
            + """
            WITH n, score
            ORDER BY score DESC
            LIMIT $limit
            RETURN
            """
            + get_entity_node_return_query(driver.provider)
        )

        records, _, _ = await driver.execute_query(
            query,
            query=fuzzy_query,
            limit=limit,
            routing_='r',
            **filter_params,
        )

    nodes = [get_entity_node_from_record(record, driver.provider) for record in records]

    return nodes


async def node_similarity_search(
    driver: GraphDriver,
    search_vector: list[float],
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
    min_score: float = DEFAULT_MIN_SCORE,
) -> list[EntityNode]:
    if driver.search_interface:
        return await driver.search_interface.node_similarity_search(
            driver, search_vector, search_filter, group_ids, limit, min_score
        )

    filter_queries, filter_params = node_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('n.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    search_vector_var = '$search_vector'
    if driver.provider == GraphProvider.KUZU:
        search_vector_var = f'CAST($search_vector AS FLOAT[{len(search_vector)}])'

    if driver.provider == GraphProvider.NEPTUNE:
        query = (
            """
                                                                                                                                    MATCH (n:Entity)
                                                                                                                                    """
            + filter_query
            + """
            RETURN DISTINCT id(n) as id, n.name_embedding as embedding
            """
        )
        resp, header, _ = await driver.execute_query(
            query,
            params=filter_params,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
        )

        if len(resp) > 0:
            # Calculate Cosine similarity then return the edge ids
            input_ids = []
            for r in resp:
                if r['embedding']:
                    score = calculate_cosine_similarity(
                        search_vector, list(map(float, r['embedding'].split(',')))
                    )
                    if score > min_score:
                        input_ids.append({'id': r['id'], 'score': score})

            # Match the edge ides and return the values
            query = (
                """
                                                                                                                                                                UNWIND $ids as i
                                                                                                                                                                MATCH (n:Entity)
                                                                                                                                                                WHERE id(n)=i.id
                                                                                                                                                                RETURN 
                                                                                                                                                                """
                + get_entity_node_return_query(driver.provider)
                + """
                    ORDER BY i.score DESC
                    LIMIT $limit
                """
            )
            records, header, _ = await driver.execute_query(
                query,
                ids=input_ids,
                search_vector=search_vector,
                limit=limit,
                min_score=min_score,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            """
                                                                                                                                    MATCH (n:Entity)
                                                                                                                                    """
            + filter_query
            + """
            WITH n, """
            + get_vector_cosine_func_query('n.name_embedding', search_vector_var, driver.provider)
            + """ AS score
            WHERE score > $min_score
            RETURN
            """
            + get_entity_node_return_query(driver.provider)
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

    nodes = [get_entity_node_from_record(record, driver.provider) for record in records]

    return nodes


async def node_bfs_search(
    driver: GraphDriver,
    bfs_origin_node_uuids: list[str] | None,
    search_filter: SearchFilters,
    bfs_max_depth: int,
    group_ids: list[str] | None = None,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[EntityNode]:
    if bfs_origin_node_uuids is None or len(bfs_origin_node_uuids) == 0 or bfs_max_depth < 1:
        return []

    filter_queries, filter_params = node_search_filter_query_constructor(
        search_filter, driver.provider
    )

    if group_ids is not None:
        filter_queries.append('n.group_id IN $group_ids')
        filter_queries.append('origin.group_id IN $group_ids')
        filter_params['group_ids'] = group_ids

    filter_query = ''
    if filter_queries:
        filter_query = ' AND ' + (' AND '.join(filter_queries))

    match_queries = [
        f"""
        UNWIND $bfs_origin_node_uuids AS origin_uuid
        MATCH (origin {{uuid: origin_uuid}})-[:RELATES_TO|MENTIONS*1..{bfs_max_depth}]->(n:Entity)
        WHERE n.group_id = origin.group_id
        """
    ]

    if driver.provider == GraphProvider.NEPTUNE:
        match_queries = [
            f"""
            UNWIND $bfs_origin_node_uuids AS origin_uuid
            MATCH (origin {{uuid: origin_uuid}})-[e:RELATES_TO|MENTIONS*1..{bfs_max_depth}]->(n:Entity)
            WHERE origin:Entity OR origin.Episode
            AND n.group_id = origin.group_id
            """
        ]

    if driver.provider == GraphProvider.KUZU:
        depth = bfs_max_depth * 2
        match_queries = [
            """
            UNWIND $bfs_origin_node_uuids AS origin_uuid
            MATCH (origin:Episodic {uuid: origin_uuid})-[:MENTIONS]->(n:Entity)
            WHERE n.group_id = origin.group_id
            """,
            f"""
            UNWIND $bfs_origin_node_uuids AS origin_uuid
            MATCH (origin:Entity {{uuid: origin_uuid}})-[:RELATES_TO*2..{depth}]->(n:Entity)
            WHERE n.group_id = origin.group_id
            """,
        ]
        if bfs_max_depth > 1:
            depth = (bfs_max_depth - 1) * 2
            match_queries.append(f"""
                UNWIND $bfs_origin_node_uuids AS origin_uuid
                MATCH (origin:Episodic {{uuid: origin_uuid}})-[:MENTIONS]->(:Entity)-[:RELATES_TO*2..{depth}]->(n:Entity)
                WHERE n.group_id = origin.group_id
            """)

    records = []
    for match_query in match_queries:
        sub_records, _, _ = await driver.execute_query(
            match_query
            + filter_query
            + """
            RETURN
            """
            + get_entity_node_return_query(driver.provider)
            + """
            LIMIT $limit
            """,
            bfs_origin_node_uuids=bfs_origin_node_uuids,
            limit=limit,
            routing_='r',
            **filter_params,
        )
        records.extend(sub_records)

    nodes = [get_entity_node_from_record(record, driver.provider) for record in records]

    return nodes


async def episode_fulltext_search(
    driver: GraphDriver,
    query: str,
    _search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
) -> list[EpisodicNode]:
    if driver.search_interface:
        return await driver.search_interface.episode_fulltext_search(
            driver, query, _search_filter, group_ids, limit
        )

    # BM25 search to get top episodes
    fuzzy_query = fulltext_query(query, group_ids, driver)
    if fuzzy_query == '':
        return []

    filter_params: dict[str, Any] = {}
    group_filter_query: LiteralString = ''
    if group_ids is not None:
        group_filter_query += '\nAND e.group_id IN $group_ids'
        filter_params['group_ids'] = group_ids

    if driver.provider == GraphProvider.NEPTUNE:
        res = driver.run_aoss_query('episode_content', query, limit=limit)  # pyright: ignore reportAttributeAccessIssue
        if res['hits']['total']['value'] > 0:
            input_ids = []
            for r in res['hits']['hits']:
                input_ids.append({'id': r['_source']['uuid'], 'score': r['_score']})

            # Match the edge ides and return the values
            query = """
                UNWIND $ids as i
                MATCH (e:Episodic)
                WHERE e.uuid=i.uuid
            RETURN
                    e.content AS content,
                    e.created_at AS created_at,
                    e.valid_at AS valid_at,
                    e.uuid AS uuid,
                    e.name AS name,
                    e.group_id AS group_id,
                    e.source_description AS source_description,
                    e.source AS source,
                    e.entity_edges AS entity_edges
                ORDER BY i.score DESC
                LIMIT $limit
            """
            records, _, _ = await driver.execute_query(
                query,
                ids=input_ids,
                query=fuzzy_query,
                limit=limit,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            get_nodes_query('episode_content', '$query', limit=limit, provider=driver.provider)
            + """
            YIELD node AS episode, score
            MATCH (e:Episodic)
            WHERE e.uuid = episode.uuid
            """
            + group_filter_query
            + """
            RETURN
            """
            + EPISODIC_NODE_RETURN
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query, query=fuzzy_query, limit=limit, routing_='r', **filter_params
        )

    episodes = [get_episodic_node_from_record(record) for record in records]

    return episodes


async def community_fulltext_search(
    driver: GraphDriver,
    query: str,
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
) -> list[CommunityNode]:
    # BM25 search to get top communities
    fuzzy_query = fulltext_query(query, group_ids, driver)
    if fuzzy_query == '':
        return []

    filter_params: dict[str, Any] = {}
    group_filter_query: LiteralString = ''
    if group_ids is not None:
        group_filter_query = 'WHERE c.group_id IN $group_ids'
        filter_params['group_ids'] = group_ids

    yield_query = 'YIELD node AS c, score'
    if driver.provider == GraphProvider.KUZU:
        yield_query = 'WITH node AS c, score'

    if driver.provider == GraphProvider.NEPTUNE:
        res = driver.run_aoss_query('community_name', query, limit=limit)  # pyright: ignore reportAttributeAccessIssue
        if res['hits']['total']['value'] > 0:
            # Calculate Cosine similarity then return the edge ids
            input_ids = []
            for r in res['hits']['hits']:
                input_ids.append({'id': r['_source']['uuid'], 'score': r['_score']})

            # Match the edge ides and return the values
            query = """
                UNWIND $ids as i
                MATCH (comm:Community)
                WHERE comm.uuid=i.id
                RETURN
                    comm.uuid AS uuid,
                    comm.group_id AS group_id,
                    comm.name AS name,
                    comm.created_at AS created_at,
                    comm.summary AS summary,
                    [x IN split(comm.name_embedding, ",") | toFloat(x)]AS name_embedding
                ORDER BY i.score DESC
                LIMIT $limit
            """
            records, _, _ = await driver.execute_query(
                query,
                ids=input_ids,
                query=fuzzy_query,
                limit=limit,
                routing_='r',
                **filter_params,
            )
        else:
            return []
    else:
        query = (
            get_nodes_query('community_name', '$query', limit=limit, provider=driver.provider)
            + yield_query
            + """
            WITH c, score
            """
            + group_filter_query
            + """
            RETURN
            """
            + COMMUNITY_NODE_RETURN
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query, query=fuzzy_query, limit=limit, routing_='r', **filter_params
        )

    communities = [get_community_node_from_record(record) for record in records]

    return communities


async def community_similarity_search(
    driver: GraphDriver,
    search_vector: list[float],
    group_ids: list[str] | None = None,
    limit=RELEVANT_SCHEMA_LIMIT,
    min_score=DEFAULT_MIN_SCORE,
) -> list[CommunityNode]:
    # vector similarity search over entity names
    query_params: dict[str, Any] = {}

    group_filter_query: LiteralString = ''
    if group_ids is not None:
        group_filter_query += ' WHERE c.group_id IN $group_ids'
        query_params['group_ids'] = group_ids

    if driver.provider == GraphProvider.NEPTUNE:
        query = (
            """
                                                                                                                                    MATCH (n:Community)
                                                                                                                                    """
            + group_filter_query
            + """
            RETURN DISTINCT id(n) as id, n.name_embedding as embedding
            """
        )
        resp, header, _ = await driver.execute_query(
            query,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
            **query_params,
        )

        if len(resp) > 0:
            # Calculate Cosine similarity then return the edge ids
            input_ids = []
            for r in resp:
                if r['embedding']:
                    score = calculate_cosine_similarity(
                        search_vector, list(map(float, r['embedding'].split(',')))
                    )
                    if score > min_score:
                        input_ids.append({'id': r['id'], 'score': score})

            # Match the edge ides and return the values
            query = """
                    UNWIND $ids as i
                    MATCH (comm:Community)
                    WHERE id(comm)=i.id
                    RETURN
                        comm.uuid As uuid,
                        comm.group_id AS group_id,
                        comm.name AS name,
                        comm.created_at AS created_at,
                        comm.summary AS summary,
                        comm.name_embedding AS name_embedding
                    ORDER BY i.score DESC
                    LIMIT $limit
                """
            records, header, _ = await driver.execute_query(
                query,
                ids=input_ids,
                search_vector=search_vector,
                limit=limit,
                min_score=min_score,
                routing_='r',
                **query_params,
            )
        else:
            return []
    else:
        search_vector_var = '$search_vector'
        if driver.provider == GraphProvider.KUZU:
            search_vector_var = f'CAST($search_vector AS FLOAT[{len(search_vector)}])'

        query = (
            """
                                                                                                                                    MATCH (c:Community)
                                                                                                                                    """
            + group_filter_query
            + """
            WITH c,
            """
            + get_vector_cosine_func_query('c.name_embedding', search_vector_var, driver.provider)
            + """ AS score
            WHERE score > $min_score
            RETURN
            """
            + COMMUNITY_NODE_RETURN
            + """
            ORDER BY score DESC
            LIMIT $limit
            """
        )

        records, _, _ = await driver.execute_query(
            query,
            search_vector=search_vector,
            limit=limit,
            min_score=min_score,
            routing_='r',
            **query_params,
        )

    communities = [get_community_node_from_record(record) for record in records]

    return communities


async def hybrid_node_search(
    queries: list[str],
    embeddings: list[list[float]],
    driver: GraphDriver,
    search_filter: SearchFilters,
    group_ids: list[str] | None = None,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[EntityNode]:
    """
    Perform a hybrid search for nodes using both text queries and embeddings.

    This method combines fulltext search and vector similarity search to find
    relevant nodes in the graph database. It uses a rrf reranker.

    Parameters
    ----------
    queries : list[str]
        A list of text queries to search for.
    embeddings : list[list[float]]
        A list of embedding vectors corresponding to the queries. If empty only fulltext search is performed.
    driver : GraphDriver
        The Neo4j driver instance for database operations.
    group_ids : list[str] | None, optional
        The list of group ids to retrieve nodes from.
    limit : int | None, optional
        The maximum number of results to return per search method. If None, a default limit will be applied.

    Returns
    -------
    list[EntityNode]
        A list of unique EntityNode objects that match the search criteria.

    Notes
    -----
    This method performs the following steps:
    1. Executes fulltext searches for each query.
    2. Executes vector similarity searches for each embedding.
    3. Combines and deduplicates the results from both search types.
    4. Logs the performance metrics of the search operation.

    The search results are deduplicated based on the node UUIDs to ensure
    uniqueness in the returned list. The 'limit' parameter is applied to each
    individual search method before deduplication. If not specified, a default
    limit (defined in the individual search functions) will be used.
    """

    start = time()
    results: list[list[EntityNode]] = list(
        await semaphore_gather(
            *[
                node_fulltext_search(driver, q, search_filter, group_ids, 2 * limit)
                for q in queries
            ],
            *[
                node_similarity_search(driver, e, search_filter, group_ids, 2 * limit)
                for e in embeddings
            ],
        )
    )

    node_uuid_map: dict[str, EntityNode] = {
        node.uuid: node for result in results for node in result
    }
    result_uuids = [[node.uuid for node in result] for result in results]

    ranked_uuids, _ = rrf(result_uuids)

    relevant_nodes: list[EntityNode] = [node_uuid_map[uuid] for uuid in ranked_uuids]

    end = time()
    logger.debug(f'Found relevant nodes: {ranked_uuids} in {(end - start) * 1000} ms')
    return relevant_nodes


async def get_relevant_nodes(
    driver: GraphDriver,
    nodes: list[EntityNode],
    search_filter: SearchFilters,
    min_score: float = DEFAULT_MIN_SCORE,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[list[EntityNode]]:
    if len(nodes) == 0:
        return []

    group_id = nodes[0].group_id
    query_nodes = [
        {
            'uuid': node.uuid,
            'name': node.name,
            'name_embedding': node.name_embedding,
            'fulltext_query': fulltext_query(node.name, [node.group_id], driver),
        }
        for node in nodes
    ]

    filter_queries, filter_params = node_search_filter_query_constructor(
        search_filter, driver.provider
    )

    filter_query = ''
    if filter_queries:
        filter_query = 'WHERE ' + (' AND '.join(filter_queries))

    if driver.provider == GraphProvider.KUZU:
        embedding_size = len(nodes[0].name_embedding) if nodes[0].name_embedding is not None else 0
        if embedding_size == 0:
            return []

        # FIXME: Kuzu currently does not support using variables such as `node.fulltext_query` as an input to FTS, which means `get_relevant_nodes()` won't work with Kuzu as the graph driver.
        query = (
            """
                                                                                                                                    UNWIND $nodes AS node
                                                                                                                                    MATCH (n:Entity {group_id: $group_id})
                                                                                                                                    """
            + filter_query
            + """
            WITH node, n, """
            + get_vector_cosine_func_query(
                'n.name_embedding',
                f'CAST(node.name_embedding AS FLOAT[{embedding_size}])',
                driver.provider,
            )
            + """ AS score
            WHERE score > $min_score
            WITH node, collect(n)[:$limit] AS top_vector_nodes, collect(n.uuid) AS vector_node_uuids
            """
            + get_nodes_query(
                'node_name_and_summary',
                'node.fulltext_query',
                limit=limit,
                provider=driver.provider,
            )
            + """
            WITH node AS m
            WHERE m.group_id = $group_id AND NOT m.uuid IN vector_node_uuids
            WITH node, top_vector_nodes, collect(m) AS fulltext_nodes

            WITH node, list_concat(top_vector_nodes, fulltext_nodes) AS combined_nodes

            UNWIND combined_nodes AS x
            WITH node, collect(DISTINCT {
                uuid: x.uuid,
                name: x.name,
                name_embedding: x.name_embedding,
                group_id: x.group_id,
                created_at: x.created_at,
                summary: x.summary,
                labels: x.labels,
                attributes: x.attributes
            }) AS matches

            RETURN
            node.uuid AS search_node_uuid, matches
            """
        )
    else:
        query = (
            """
                                                                                                                                    UNWIND $nodes AS node
                                                                                                                                    MATCH (n:Entity {group_id: $group_id})
                                                                                                                                    """
            + filter_query
            + """
            WITH node, n, """
            + get_vector_cosine_func_query(
                'n.name_embedding', 'node.name_embedding', driver.provider
            )
            + """ AS score
            WHERE score > $min_score
            WITH node, collect(n)[..$limit] AS top_vector_nodes, collect(n.uuid) AS vector_node_uuids
            """
            + get_nodes_query(
                'node_name_and_summary',
                'node.fulltext_query',
                limit=limit,
                provider=driver.provider,
            )
            + """
            YIELD node AS m
            WHERE m.group_id = $group_id
            WITH node, top_vector_nodes, vector_node_uuids, collect(m) AS fulltext_nodes

            WITH node,
                top_vector_nodes,
                [m IN fulltext_nodes WHERE NOT m.uuid IN vector_node_uuids] AS filtered_fulltext_nodes

            WITH node, top_vector_nodes + filtered_fulltext_nodes AS combined_nodes

            UNWIND combined_nodes AS combined_node
            WITH node, collect(DISTINCT combined_node) AS deduped_nodes

            RETURN
            node.uuid AS search_node_uuid,
            [x IN deduped_nodes | {
                uuid: x.uuid,
                name: x.name,
                name_embedding: x.name_embedding,
                group_id: x.group_id,
                created_at: x.created_at,
                summary: x.summary,
                labels: labels(x),
                attributes: properties(x)
            }] AS matches
            """
        )

    results, _, _ = await driver.execute_query(
        query,
        nodes=query_nodes,
        group_id=group_id,
        limit=limit,
        min_score=min_score,
        routing_='r',
        **filter_params,
    )

    relevant_nodes_dict: dict[str, list[EntityNode]] = {
        result['search_node_uuid']: [
            get_entity_node_from_record(record, driver.provider) for record in result['matches']
        ]
        for result in results
    }

    relevant_nodes = [relevant_nodes_dict.get(node.uuid, []) for node in nodes]

    return relevant_nodes


async def get_relevant_edges(
    driver: GraphDriver,
    edges: list[EntityEdge],
    search_filter: SearchFilters,
    min_score: float = DEFAULT_MIN_SCORE,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[list[EntityEdge]]:
    if len(edges) == 0:
        return []

    filter_queries, filter_params = edge_search_filter_query_constructor(
        search_filter, driver.provider
    )

    filter_query = ''
    if filter_queries:
        filter_query = ' WHERE ' + (' AND '.join(filter_queries))

    if driver.provider == GraphProvider.NEPTUNE:
        query = (
            """
                                                                                                                                    UNWIND $edges AS edge
                                                                                                                                    MATCH (n:Entity {uuid: edge.source_node_uuid})-[e:RELATES_TO {group_id: edge.group_id}]-(m:Entity {uuid: edge.target_node_uuid})
                                                                                                                                    """
            + filter_query
            + """
            WITH e, edge
            RETURN DISTINCT id(e) as id, e.fact_embedding as source_embedding, edge.uuid as search_edge_uuid,
            edge.fact_embedding as target_embedding
            """
        )
        resp, _, _ = await driver.execute_query(
            query,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

        # Calculate Cosine similarity then return the edge ids
        input_ids = []
        for r in resp:
            score = calculate_cosine_similarity(
                list(map(float, r['source_embedding'].split(','))), r['target_embedding']
            )
            if score > min_score:
                input_ids.append({'id': r['id'], 'score': score, 'uuid': r['search_edge_uuid']})

        # Match the edge ides and return the values
        query = """
        UNWIND $ids AS edge
        MATCH ()-[e]->()
        WHERE id(e) = edge.id
        WITH edge, e
        ORDER BY edge.score DESC
        RETURN edge.uuid AS search_edge_uuid,
            collect({
                uuid: e.uuid,
                source_node_uuid: startNode(e).uuid,
                target_node_uuid: endNode(e).uuid,
                created_at: e.created_at,
                name: e.name,
                group_id: e.group_id,
                fact: e.fact,
                fact_embedding: [x IN split(e.fact_embedding, ",") | toFloat(x)],
                episodes: split(e.episodes, ","),
                expired_at: e.expired_at,
                valid_at: e.valid_at,
                invalid_at: e.invalid_at,
                attributes: properties(e)
            })[..$limit] AS matches
                """

        results, _, _ = await driver.execute_query(
            query,
            ids=input_ids,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )
    else:
        if driver.provider == GraphProvider.KUZU:
            embedding_size = (
                len(edges[0].fact_embedding) if edges[0].fact_embedding is not None else 0
            )
            if embedding_size == 0:
                return []

            query = (
                """
                                                                                                                                        UNWIND $edges AS edge
                                                                                                                                        MATCH (n:Entity {uuid: edge.source_node_uuid})-[:RELATES_TO]-(e:RelatesToNode_ {group_id: edge.group_id})-[:RELATES_TO]-(m:Entity {uuid: edge.target_node_uuid})
                                                                                                                                        """
                + filter_query
                + """
                WITH e, edge, n, m, """
                + get_vector_cosine_func_query(
                    'e.fact_embedding',
                    f'CAST(edge.fact_embedding AS FLOAT[{embedding_size}])',
                    driver.provider,
                )
                + """ AS score
                WHERE score > $min_score
                WITH e, edge, n, m, score
                ORDER BY score DESC
                LIMIT $limit
                RETURN
                    edge.uuid AS search_edge_uuid,
                    collect({
                        uuid: e.uuid,
                        source_node_uuid: n.uuid,
                        target_node_uuid: m.uuid,
                        created_at: e.created_at,
                        name: e.name,
                        group_id: e.group_id,
                        fact: e.fact,
                        fact_embedding: e.fact_embedding,
                        episodes: e.episodes,
                        expired_at: e.expired_at,
                        valid_at: e.valid_at,
                        invalid_at: e.invalid_at,
                        attributes: e.attributes
                    }) AS matches
                """
            )
        else:
            query = (
                """
                                                                                                                                        UNWIND $edges AS edge
                                                                                                                                        MATCH (n:Entity {uuid: edge.source_node_uuid})-[e:RELATES_TO {group_id: edge.group_id}]-(m:Entity {uuid: edge.target_node_uuid})
                                                                                                                                        """
                + filter_query
                + """
                WITH e, edge, """
                + get_vector_cosine_func_query(
                    'e.fact_embedding', 'edge.fact_embedding', driver.provider
                )
                + """ AS score
                WHERE score > $min_score
                WITH edge, e, score
                ORDER BY score DESC
                RETURN
                    edge.uuid AS search_edge_uuid,
                    collect({
                        uuid: e.uuid,
                        source_node_uuid: startNode(e).uuid,
                        target_node_uuid: endNode(e).uuid,
                        created_at: e.created_at,
                        name: e.name,
                        group_id: e.group_id,
                        fact: e.fact,
                        fact_embedding: e.fact_embedding,
                        episodes: e.episodes,
                        expired_at: e.expired_at,
                        valid_at: e.valid_at,
                        invalid_at: e.invalid_at,
                        attributes: properties(e)
                    })[..$limit] AS matches
                """
            )

        results, _, _ = await driver.execute_query(
            query,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

    relevant_edges_dict: dict[str, list[EntityEdge]] = {
        result['search_edge_uuid']: [
            get_entity_edge_from_record(record, driver.provider) for record in result['matches']
        ]
        for result in results
    }

    relevant_edges = [relevant_edges_dict.get(edge.uuid, []) for edge in edges]

    return relevant_edges


async def get_edge_invalidation_candidates(
    driver: GraphDriver,
    edges: list[EntityEdge],
    search_filter: SearchFilters,
    min_score: float = DEFAULT_MIN_SCORE,
    limit: int = RELEVANT_SCHEMA_LIMIT,
) -> list[list[EntityEdge]]:
    if len(edges) == 0:
        return []

    filter_queries, filter_params = edge_search_filter_query_constructor(
        search_filter, driver.provider
    )

    filter_query = ''
    if filter_queries:
        filter_query = ' AND ' + (' AND '.join(filter_queries))

    if driver.provider == GraphProvider.NEPTUNE:
        query = (
            """
                                                                                                                                    UNWIND $edges AS edge
                                                                                                                                    MATCH (n:Entity)-[e:RELATES_TO {group_id: edge.group_id}]->(m:Entity)
                                                                                                                                    WHERE n.uuid IN [edge.source_node_uuid, edge.target_node_uuid] OR m.uuid IN [edge.target_node_uuid, edge.source_node_uuid]
                                                                                                                                    """
            + filter_query
            + """
            WITH e, edge
            RETURN DISTINCT id(e) as id, e.fact_embedding as source_embedding,
            edge.fact_embedding as target_embedding,
            edge.uuid as search_edge_uuid
            """
        )
        resp, _, _ = await driver.execute_query(
            query,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )

        # Calculate Cosine similarity then return the edge ids
        input_ids = []
        for r in resp:
            score = calculate_cosine_similarity(
                list(map(float, r['source_embedding'].split(','))), r['target_embedding']
            )
            if score > min_score:
                input_ids.append({'id': r['id'], 'score': score, 'uuid': r['search_edge_uuid']})

        # Match the edge ides and return the values
        query = """
        UNWIND $ids AS edge
        MATCH ()-[e]->()
        WHERE id(e) = edge.id
        WITH edge, e
        ORDER BY edge.score DESC
        RETURN edge.uuid AS search_edge_uuid,
            collect({
                uuid: e.uuid,
                source_node_uuid: startNode(e).uuid,
                target_node_uuid: endNode(e).uuid,
                created_at: e.created_at,
                name: e.name,
                group_id: e.group_id,
                fact: e.fact,
                fact_embedding: [x IN split(e.fact_embedding, ",") | toFloat(x)],
                episodes: split(e.episodes, ","),
                expired_at: e.expired_at,
                valid_at: e.valid_at,
                invalid_at: e.invalid_at,
                attributes: properties(e)
            })[..$limit] AS matches
                """
        results, _, _ = await driver.execute_query(
            query,
            ids=input_ids,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )
    else:
        if driver.provider == GraphProvider.KUZU:
            embedding_size = (
                len(edges[0].fact_embedding) if edges[0].fact_embedding is not None else 0
            )
            if embedding_size == 0:
                return []

            query = (
                """
                                                                                                                                        UNWIND $edges AS edge
                                                                                                                                        MATCH (n:Entity)-[:RELATES_TO]->(e:RelatesToNode_ {group_id: edge.group_id})-[:RELATES_TO]->(m:Entity)
                                                                                                                                        WHERE (n.uuid IN [edge.source_node_uuid, edge.target_node_uuid] OR m.uuid IN [edge.target_node_uuid, edge.source_node_uuid])
                                                                                                                                        """
                + filter_query
                + """
                WITH edge, e, n, m, """
                + get_vector_cosine_func_query(
                    'e.fact_embedding',
                    f'CAST(edge.fact_embedding AS FLOAT[{embedding_size}])',
                    driver.provider,
                )
                + """ AS score
                WHERE score > $min_score
                WITH edge, e, n, m, score
                ORDER BY score DESC
                LIMIT $limit
                RETURN
                    edge.uuid AS search_edge_uuid,
                    collect({
                        uuid: e.uuid,
                        source_node_uuid: n.uuid,
                        target_node_uuid: m.uuid,
                        created_at: e.created_at,
                        name: e.name,
                        group_id: e.group_id,
                        fact: e.fact,
                        fact_embedding: e.fact_embedding,
                        episodes: e.episodes,
                        expired_at: e.expired_at,
                        valid_at: e.valid_at,
                        invalid_at: e.invalid_at,
                        attributes: e.attributes
                    }) AS matches
                """
            )
        else:
            query = (
                """
                                                                                                                                        UNWIND $edges AS edge
                                                                                                                                        MATCH (n:Entity)-[e:RELATES_TO {group_id: edge.group_id}]->(m:Entity)
                                                                                                                                        WHERE n.uuid IN [edge.source_node_uuid, edge.target_node_uuid] OR m.uuid IN [edge.target_node_uuid, edge.source_node_uuid]
                                                                                                                                        """
                + filter_query
                + """
                WITH edge, e, """
                + get_vector_cosine_func_query(
                    'e.fact_embedding', 'edge.fact_embedding', driver.provider
                )
                + """ AS score
                WHERE score > $min_score
                WITH edge, e, score
                ORDER BY score DESC
                RETURN
                    edge.uuid AS search_edge_uuid,
                    collect({
                        uuid: e.uuid,
                        source_node_uuid: startNode(e).uuid,
                        target_node_uuid: endNode(e).uuid,
                        created_at: e.created_at,
                        name: e.name,
                        group_id: e.group_id,
                        fact: e.fact,
                        fact_embedding: e.fact_embedding,
                        episodes: e.episodes,
                        expired_at: e.expired_at,
                        valid_at: e.valid_at,
                        invalid_at: e.invalid_at,
                        attributes: properties(e)
                    })[..$limit] AS matches
                """
            )

        results, _, _ = await driver.execute_query(
            query,
            edges=[edge.model_dump() for edge in edges],
            limit=limit,
            min_score=min_score,
            routing_='r',
            **filter_params,
        )
    invalidation_edges_dict: dict[str, list[EntityEdge]] = {
        result['search_edge_uuid']: [
            get_entity_edge_from_record(record, driver.provider) for record in result['matches']
        ]
        for result in results
    }

    invalidation_edges = [invalidation_edges_dict.get(edge.uuid, []) for edge in edges]

    return invalidation_edges


# takes in a list of rankings of uuids
def rrf(
    results: list[list[str]], rank_const=1, min_score: float = 0
) -> tuple[list[str], list[float]]:
    scores: dict[str, float] = defaultdict(float)
    for result in results:
        for i, uuid in enumerate(result):
            scores[uuid] += 1 / (i + rank_const)

    scored_uuids = [term for term in scores.items()]
    scored_uuids.sort(reverse=True, key=lambda term: term[1])

    sorted_uuids = [term[0] for term in scored_uuids]

    return [uuid for uuid in sorted_uuids if scores[uuid] >= min_score], [
        scores[uuid] for uuid in sorted_uuids if scores[uuid] >= min_score
    ]


async def node_distance_reranker(
    driver: GraphDriver,
    node_uuids: list[str],
    center_node_uuid: str,
    min_score: float = 0,
) -> tuple[list[str], list[float]]:
    # filter out node_uuid center node node uuid
    filtered_uuids = list(filter(lambda node_uuid: node_uuid != center_node_uuid, node_uuids))
    scores: dict[str, float] = {center_node_uuid: 0.0}

    query = """
    UNWIND $node_uuids AS node_uuid
    MATCH (center:Entity {uuid: $center_uuid})-[:RELATES_TO]-(n:Entity {uuid: node_uuid})
    RETURN 1 AS score, node_uuid AS uuid
    """
    if driver.provider == GraphProvider.KUZU:
        query = """
        UNWIND $node_uuids AS node_uuid
        MATCH (center:Entity {uuid: $center_uuid})-[:RELATES_TO]->(e:RelatesToNode_)-[:RELATES_TO]->(n:Entity {uuid: node_uuid})
        RETURN 1 AS score, node_uuid AS uuid
        """

    # Find the shortest path to center node
    results, header, _ = await driver.execute_query(
        query,
        node_uuids=filtered_uuids,
        center_uuid=center_node_uuid,
        routing_='r',
    )
    if driver.provider == GraphProvider.FALKORDB:
        results = [dict(zip(header, row, strict=True)) for row in results]

    for result in results:
        uuid = result['uuid']
        score = result['score']
        scores[uuid] = score

    for uuid in filtered_uuids:
        if uuid not in scores:
            scores[uuid] = float('inf')

    # rerank on shortest distance
    filtered_uuids.sort(key=lambda cur_uuid: scores[cur_uuid])

    # add back in filtered center uuid if it was filtered out
    if center_node_uuid in node_uuids:
        scores[center_node_uuid] = 0.1
        filtered_uuids = [center_node_uuid] + filtered_uuids

    return [uuid for uuid in filtered_uuids if (1 / scores[uuid]) >= min_score], [
        1 / scores[uuid] for uuid in filtered_uuids if (1 / scores[uuid]) >= min_score
    ]


async def episode_mentions_reranker(
    driver: GraphDriver, node_uuids: list[list[str]], min_score: float = 0
) -> tuple[list[str], list[float]]:
    # use rrf as a preliminary ranker
    sorted_uuids, _ = rrf(node_uuids)
    scores: dict[str, float] = {}

    # Find the shortest path to center node
    results, _, _ = await driver.execute_query(
        """
        UNWIND $node_uuids AS node_uuid
        MATCH (episode:Episodic)-[r:MENTIONS]->(n:Entity {uuid: node_uuid})
        RETURN count(*) AS score, n.uuid AS uuid
        """,
        node_uuids=sorted_uuids,
        routing_='r',
    )

    for result in results:
        scores[result['uuid']] = result['score']

    for uuid in sorted_uuids:
        if uuid not in scores:
            scores[uuid] = float('inf')

    # rerank on shortest distance
    sorted_uuids.sort(key=lambda cur_uuid: scores[cur_uuid])

    return [uuid for uuid in sorted_uuids if scores[uuid] >= min_score], [
        scores[uuid] for uuid in sorted_uuids if scores[uuid] >= min_score
    ]


def maximal_marginal_relevance(
    query_vector: list[float],
    candidates: dict[str, list[float]],
    mmr_lambda: float = DEFAULT_MMR_LAMBDA,
    min_score: float = -2.0,
) -> tuple[list[str], list[float]]:
    start = time()
    query_array = np.array(query_vector)
    candidate_arrays: dict[str, NDArray] = {}
    for uuid, embedding in candidates.items():
        candidate_arrays[uuid] = normalize_l2(embedding)

    uuids: list[str] = list(candidate_arrays.keys())

    similarity_matrix = np.zeros((len(uuids), len(uuids)))

    for i, uuid_1 in enumerate(uuids):
        for j, uuid_2 in enumerate(uuids[:i]):
            u = candidate_arrays[uuid_1]
            v = candidate_arrays[uuid_2]
            similarity = np.dot(u, v)

            similarity_matrix[i, j] = similarity
            similarity_matrix[j, i] = similarity

    mmr_scores: dict[str, float] = {}
    for i, uuid in enumerate(uuids):
        max_sim = np.max(similarity_matrix[i, :])
        mmr = mmr_lambda * np.dot(query_array, candidate_arrays[uuid]) + (mmr_lambda - 1) * max_sim
        mmr_scores[uuid] = mmr

    uuids.sort(reverse=True, key=lambda c: mmr_scores[c])

    end = time()
    logger.debug(f'Completed MMR reranking in {(end - start) * 1000} ms')

    return [uuid for uuid in uuids if mmr_scores[uuid] >= min_score], [
        mmr_scores[uuid] for uuid in uuids if mmr_scores[uuid] >= min_score
    ]


async def get_embeddings_for_nodes(
    driver: GraphDriver, nodes: list[EntityNode]
) -> dict[str, list[float]]:
    if driver.graph_operations_interface:
        return await driver.graph_operations_interface.node_load_embeddings_bulk(driver, nodes)
    elif driver.provider == GraphProvider.NEPTUNE:
        query = """
        MATCH (n:Entity)
        WHERE n.uuid IN $node_uuids
        RETURN DISTINCT
            n.uuid AS uuid,
            split(n.name_embedding, ",") AS name_embedding
        """
    else:
        query = """
        MATCH (n:Entity)
        WHERE n.uuid IN $node_uuids
        RETURN DISTINCT
            n.uuid AS uuid,
            n.name_embedding AS name_embedding
        """
    results, _, _ = await driver.execute_query(
        query,
        node_uuids=[node.uuid for node in nodes],
        routing_='r',
    )

    embeddings_dict: dict[str, list[float]] = {}
    for result in results:
        uuid: str = result.get('uuid')
        embedding: list[float] = result.get('name_embedding')
        if uuid is not None and embedding is not None:
            embeddings_dict[uuid] = embedding

    return embeddings_dict


async def get_embeddings_for_communities(
    driver: GraphDriver, communities: list[CommunityNode]
) -> dict[str, list[float]]:
    if driver.provider == GraphProvider.NEPTUNE:
        query = """
        MATCH (c:Community)
        WHERE c.uuid IN $community_uuids
        RETURN DISTINCT
            c.uuid AS uuid,
            split(c.name_embedding, ",") AS name_embedding
        """
    else:
        query = """
        MATCH (c:Community)
        WHERE c.uuid IN $community_uuids
        RETURN DISTINCT
            c.uuid AS uuid,
            c.name_embedding AS name_embedding
        """
    results, _, _ = await driver.execute_query(
        query,
        community_uuids=[community.uuid for community in communities],
        routing_='r',
    )

    embeddings_dict: dict[str, list[float]] = {}
    for result in results:
        uuid: str = result.get('uuid')
        embedding: list[float] = result.get('name_embedding')
        if uuid is not None and embedding is not None:
            embeddings_dict[uuid] = embedding

    return embeddings_dict


async def get_embeddings_for_edges(
    driver: GraphDriver, edges: list[EntityEdge]
) -> dict[str, list[float]]:
    if driver.graph_operations_interface:
        return await driver.graph_operations_interface.edge_load_embeddings_bulk(driver, edges)
    elif driver.provider == GraphProvider.NEPTUNE:
        query = """
        MATCH (n:Entity)-[e:RELATES_TO]-(m:Entity)
        WHERE e.uuid IN $edge_uuids
        RETURN DISTINCT
            e.uuid AS uuid,
            split(e.fact_embedding, ",") AS fact_embedding
        """
    else:
        match_query = """
            MATCH (n:Entity)-[e:RELATES_TO]-(m:Entity)
        """
        if driver.provider == GraphProvider.KUZU:
            match_query = """
                MATCH (n:Entity)-[:RELATES_TO]-(e:RelatesToNode_)-[:RELATES_TO]-(m:Entity)
            """

        query = (
            match_query
            + """
        WHERE e.uuid IN $edge_uuids
        RETURN DISTINCT
            e.uuid AS uuid,
            e.fact_embedding AS fact_embedding
        """
        )
    results, _, _ = await driver.execute_query(
        query,
        edge_uuids=[edge.uuid for edge in edges],
        routing_='r',
    )

    embeddings_dict: dict[str, list[float]] = {}
    for result in results:
        uuid: str = result.get('uuid')
        embedding: list[float] = result.get('fact_embedding')
        if uuid is not None and embedding is not None:
            embeddings_dict[uuid] = embedding

    return embeddings_dict

```
Page 8/9FirstPrevNextLast