#
tokens: 5240/50000 5/5 files
lines: off (toggle) GitHub
raw markdown copy
# Directory Structure

```
├── .github
│   └── workflows
│       └── build-models.yml
├── .gitignore
├── cached-pickles
│   ├── example_model.pkl
│   ├── feature_neutralization.pkl
│   ├── hello_numerai.pkl
│   └── target_ensemble.pkl
├── crypto
│   └── example_model.ipynb
├── example_model.ipynb
├── feature_neutralization.ipynb
├── hello_numerai.ipynb
├── LICENSE.txt
├── numerai
│   ├── example_model.ipynb
│   ├── feature_neutralization.ipynb
│   ├── hello_numerai.ipynb
│   └── target_ensemble.ipynb
├── README.md
├── signals
│   └── example_model.ipynb
├── target_ensemble.ipynb
└── utils.py
```

# Files

--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------

```
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
#  Usually these files are written by a python script from a template
#  before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*,cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# IPython Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# dotenv
.env

# virtualenv
venv/
ENV/

# Spyder project settings
.spyderproject

# Rope project settings
.ropeproject

# Data
*.csv
*.parquet
*.json
*.model

.idea
example_model.xgb

.DS_Store

v5.0/
```

--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------

```markdown
# Numerai Example Scripts

A collection of scripts and notebooks to help you get started quickly. 

Need help? Find us on Discord:

[![](https://dcbadge.vercel.app/api/server/numerai)](https://discord.gg/numerai)


## Notebooks 

Try running these notebooks on Google Colab's free tier!

### Hello Numerai
<a target="_blank" href="https://colab.research.google.com/github/numerai/example-scripts/blob/master/hello_numerai.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

Start here if you are new! Explore the dataset and build your first model. 

### Feature Neutralization
<a target="_blank" href="https://colab.research.google.com/github/numerai/example-scripts/blob/master/feature_neutralization.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

Learn how to measure feature risk and control it with feature neutralization.

### Target Ensemble
<a target="_blank" href="https://colab.research.google.com/github/numerai/example-scripts/blob/master/target_ensemble.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

Learn how to create an ensemble trained on different targets.

### Model Upload
<a target="_blank" href="https://colab.research.google.com/github/numerai/example-scripts/blob/master/example_model.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

A barebones example of how to build and upload your model to Numerai.
```

--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------

```
MIT License

Copyright (c) 2022 Numerai

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

```

--------------------------------------------------------------------------------
/.github/workflows/build-models.yml:
--------------------------------------------------------------------------------

```yaml
name: Build Example Model Pickles

on:
  workflow_dispatch:
  push:
    # paths:
    #   - example_model.ipynb
    #   - hello_numerai.ipynb
    #   - feature_neutralization.ipynb
    #   - target_ensemble.ipynb
    branches:
      - master

concurrency: build-example-models

jobs:

  build_and_test:
    name: "Build Example Model Pickles"
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - uses: actions/setup-python@v5
        with:
          python-version: "3.10"
      - name: Install jupyter
        run: |
          python -m pip install --upgrade pip
          pip install jupyter
          pip install -r https://raw.githubusercontent.com/numerai/numerai-predict/refs/heads/master/requirements.txt
      - name: build-example-model
        run: |
          jupyter nbconvert \
            --execute example_model.ipynb \
            --ExecutePreprocessor.timeout=-1 \
            --to html
      - name: build-hello-numerai
        run: |
          jupyter nbconvert \
            --execute hello_numerai.ipynb \
            --ExecutePreprocessor.timeout=-1 \
            --to html
      - name: build-feature-neutralization
        run: |
          jupyter nbconvert \
            --execute feature_neutralization.ipynb \
            --ExecutePreprocessor.timeout=-1 \
            --to html
      - name: build-target-ensemble
        run: |
          jupyter nbconvert \
            --execute target_ensemble.ipynb \
            --ExecutePreprocessor.timeout=-1 \
            --to html
      - name: delete-html
        run: |
          rm example_model.html
          rm hello_numerai.html
          rm feature_neutralization.html
          rm target_ensemble.html
      - name: move-pickles-to-cached-pickles-dir
        run: |
          mkdir -p cached-pickles/
          mv -f example_model.pkl cached-pickles/
          mv -f hello_numerai.pkl cached-pickles/
          mv -f feature_neutralization.pkl cached-pickles/
          mv -f target_ensemble.pkl cached-pickles/
      - name: commit-to-master
        uses: EndBug/add-and-commit@v9
        with:
          add: "cached-pickles/*"

```

--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------

```python
"""
THIS MODULE IS DEPRECATED. Use numerai-tools:
https://github.com/numerai/numerai-tools

If there is a feature missing from numerai-tools, please
open an issue with a link to the function in this file you'd
like to see.
"""

import numpy as np
import pandas as pd
import scipy
from tqdm import tqdm
from pathlib import Path
import json

ERA_COL = "era"
TARGET_COL = "target_cyrus_v4_20"
DATA_TYPE_COL = "data_type"
EXAMPLE_PREDS_COL = "example_preds"
MODEL_FOLDER = "models"
MODEL_CONFIGS_FOLDER = "model_configs"
PREDICTION_FILES_FOLDER = "prediction_files"


def save_prediction(df, name):
    """DEPRECATED"""
    try:
        Path(PREDICTION_FILES_FOLDER).mkdir(exist_ok=True, parents=True)
    except Exception as ex:
        pass
    df.to_csv(f"{PREDICTION_FILES_FOLDER}/{name}.csv", index=True)


def save_model(model, name):
    """DEPRECATED"""
    try:
        Path(MODEL_FOLDER).mkdir(exist_ok=True, parents=True)
    except Exception as ex:
        pass
    pd.to_pickle(model, f"{MODEL_FOLDER}/{name}.pkl")


def load_model(name):
    """DEPRECATED"""
    path = Path(f"{MODEL_FOLDER}/{name}.pkl")
    if path.is_file():
        model = pd.read_pickle(f"{MODEL_FOLDER}/{name}.pkl")
    else:
        model = False
    return model


def save_model_config(model_config, model_name):
    """DEPRECATED"""
    try:
        Path(MODEL_CONFIGS_FOLDER).mkdir(exist_ok=True, parents=True)
    except Exception as ex:
        pass
    with open(f"{MODEL_CONFIGS_FOLDER}/{model_name}.json", "w") as fp:
        json.dump(model_config, fp)


def load_model_config(model_name):
    """DEPRECATED"""
    path_str = f"{MODEL_CONFIGS_FOLDER}/{model_name}.json"
    path = Path(path_str)
    if path.is_file():
        with open(path_str, "r") as fp:
            model_config = json.load(fp)
    else:
        model_config = False
    return model_config


def get_biggest_change_features(corrs, n):
    """DEPRECATED"""
    all_eras = corrs.index.sort_values()
    h1_eras = all_eras[: len(all_eras) // 2]
    h2_eras = all_eras[len(all_eras) // 2 :]

    h1_corr_means = corrs.loc[h1_eras, :].mean()
    h2_corr_means = corrs.loc[h2_eras, :].mean()

    corr_diffs = h2_corr_means - h1_corr_means
    worst_n = corr_diffs.abs().sort_values(ascending=False).head(n).index.tolist()
    return worst_n


def get_time_series_cross_val_splits(data, cv=3, embargo=12):
    """DEPRECATED"""
    all_train_eras = data[ERA_COL].unique()
    len_split = len(all_train_eras) // cv
    test_splits = [
        all_train_eras[i * len_split : (i + 1) * len_split] for i in range(cv)
    ]
    # fix the last test split to have all the last eras, in case the number of eras wasn't divisible by cv
    remainder = len(all_train_eras) % cv
    if remainder != 0:
        test_splits[-1] = np.append(test_splits[-1], all_train_eras[-remainder:])

    train_splits = []
    for test_split in test_splits:
        test_split_max = int(np.max(test_split))
        test_split_min = int(np.min(test_split))
        # get all of the eras that aren't in the test split
        train_split_not_embargoed = [
            e
            for e in all_train_eras
            if not (test_split_min <= int(e) <= test_split_max)
        ]
        # embargo the train split so we have no leakage.
        # one era is length 5, so we need to embargo by target_length/5 eras.
        # To be consistent for all targets, let's embargo everything by 60/5 == 12 eras.
        train_split = [
            e
            for e in train_split_not_embargoed
            if abs(int(e) - test_split_max) > embargo
            and abs(int(e) - test_split_min) > embargo
        ]
        train_splits.append(train_split)

    # convenient way to iterate over train and test splits
    train_test_zip = zip(train_splits, test_splits)
    return train_test_zip


def neutralize(
    df,
    columns,
    neutralizers=None,
    proportion=1.0,
    normalize=True,
    era_col="era",
    verbose=False,
):
    """DEPRECATED"""
    if neutralizers is None:
        neutralizers = []
    unique_eras = df[era_col].unique()
    computed = []
    if verbose:
        iterator = tqdm(unique_eras)
    else:
        iterator = unique_eras
    for u in iterator:
        df_era = df[df[era_col] == u]
        scores = df_era[columns].values
        if normalize:
            scores2 = []
            for x in scores.T:
                x = (scipy.stats.rankdata(x, method="ordinal") - 0.5) / len(x)
                x = scipy.stats.norm.ppf(x)
                scores2.append(x)
            scores = np.array(scores2).T
        exposures = df_era[neutralizers].values

        scores -= proportion * exposures.dot(
            np.linalg.pinv(exposures.astype(np.float32), rcond=1e-6).dot(
                scores.astype(np.float32)
            )
        )

        scores /= scores.std(ddof=0)

        computed.append(scores)

    return pd.DataFrame(np.concatenate(computed), columns=columns, index=df.index)


def neutralize_series(series, by, proportion=1.0):
    """DEPRECATED"""
    scores = series.values.reshape(-1, 1)
    exposures = by.values.reshape(-1, 1)

    # this line makes series neutral to a constant column so that it's centered and for sure gets corr 0 with exposures
    exposures = np.hstack(
        (exposures, np.array([np.mean(series)] * len(exposures)).reshape(-1, 1))
    )

    correction = proportion * (
        exposures.dot(np.linalg.lstsq(exposures, scores, rcond=None)[0])
    )
    corrected_scores = scores - correction
    neutralized = pd.Series(corrected_scores.ravel(), index=series.index)
    return neutralized


def unif(df):
    """DEPRECATED"""
    x = (df.rank(method="first") - 0.5) / len(df)
    return pd.Series(x, index=df.index)


def numerai_corr(preds, target):
    """DEPRECATED"""
    # rank (keeping ties) then gaussianize predictions to standardize prediction distributions
    ranked_preds = (preds.rank(method="average").values - 0.5) / preds.count()
    gauss_ranked_preds = scipy.stats.norm.ppf(ranked_preds)
    # center targets around 0
    centered_target = target - target.mean()
    # raise both preds and target to the power of 1.5 to accentuate the tails
    preds_p15 = np.sign(gauss_ranked_preds) * np.abs(gauss_ranked_preds) ** 1.5
    target_p15 = np.sign(centered_target) * np.abs(centered_target) ** 1.5
    # finally return the Pearson correlation
    return np.corrcoef(preds_p15, target_p15)[0, 1]


def get_feature_neutral_mean(
    df, prediction_col, target_col, features_for_neutralization=None
):
    """DEPRECATED"""
    if features_for_neutralization is None:
        features_for_neutralization = [c for c in df.columns if c.startswith("feature")]
    df.loc[:, "neutral_sub"] = neutralize(
        df, [prediction_col], features_for_neutralization
    )[prediction_col]
    scores = (
        df.groupby("era")
        .apply(lambda x: numerai_corr(x["neutral_sub"], x[target_col]))
        .mean()
    )
    return np.mean(scores)


def get_feature_neutral_mean_tb_era(
    df, prediction_col, target_col, tb, features_for_neutralization=None
):
    """DEPRECATED"""
    if features_for_neutralization is None:
        features_for_neutralization = [c for c in df.columns if c.startswith("feature")]
    temp_df = df.reset_index(
        drop=True
    ).copy()  # Reset index due to use of argsort later
    temp_df.loc[:, "neutral_sub"] = neutralize(
        temp_df, [prediction_col], features_for_neutralization
    )[prediction_col]
    temp_df_argsort = temp_df.loc[:, "neutral_sub"].argsort()
    temp_df_tb_idx = pd.concat([temp_df_argsort.iloc[:tb], temp_df_argsort.iloc[-tb:]])
    temp_df_tb = temp_df.loc[temp_df_tb_idx]
    tb_fnc = numerai_corr(temp_df_tb["neutral_sub"], temp_df_tb[target_col])
    return tb_fnc


def fast_score_by_date(df, columns, target, tb=None, era_col="era"):
    """DEPRECATED"""
    unique_eras = df[era_col].unique()
    computed = []
    for u in unique_eras:
        df_era = df[df[era_col] == u]
        era_pred = np.float64(df_era[columns].values.T)
        era_target = np.float64(df_era[target].values.T)

        if tb is None:
            ccs = numerai_corr(era_pred, era_target)
        else:
            tbidx = np.argsort(era_pred, axis=1)
            tbidx = np.concatenate([tbidx[:, :tb], tbidx[:, -tb:]], axis=1)
            ccs = [
                numerai_corr(pd.Series(era_target[tmpidx]), pd.Series(tmppred[tmpidx]))
                for tmpidx, tmppred in zip(tbidx, era_pred)
            ]
            ccs = np.array(ccs)

        computed.append(ccs)

    return pd.DataFrame(np.array(computed), columns=columns, index=df[era_col].unique())


def exposure_dissimilarity_per_era(df, prediction_col, example_col, feature_cols=None):
    """DEPRECATED"""
    if feature_cols is None:
        feature_cols = [c for c in df.columns if c.startswith("feature")]
    u = df.loc[:, feature_cols].corrwith(df[prediction_col])
    e = df.loc[:, feature_cols].corrwith(df[example_col])
    return 1 - (np.dot(u, e) / np.dot(e, e))


def validation_metrics(
    validation_data,
    pred_cols,
    example_col,
    fast_mode=False,
    target_col=TARGET_COL,
    features_for_neutralization=None,
):
    """DEPRECATED"""
    validation_stats = pd.DataFrame()
    feature_cols = [c for c in validation_data if c.startswith("feature_")]
    for pred_col in pred_cols:
        # Check the per-era correlations on the validation set (out of sample)
        validation_correlations = validation_data.groupby(ERA_COL).apply(
            lambda d: numerai_corr(d[pred_col], d[target_col])
        )

        mean = validation_correlations.mean()
        std = validation_correlations.std(ddof=0)
        sharpe = mean / std

        validation_stats.loc["mean", pred_col] = mean
        validation_stats.loc["std", pred_col] = std
        validation_stats.loc["sharpe", pred_col] = sharpe

        rolling_max = (
            (validation_correlations + 1)
            .cumprod()
            .rolling(window=9000, min_periods=1)  # arbitrarily large
            .max()
        )
        daily_value = (validation_correlations + 1).cumprod()
        max_drawdown = -((rolling_max - daily_value) / rolling_max).max()
        validation_stats.loc["max_drawdown", pred_col] = max_drawdown

        payout_scores = validation_correlations.clip(-0.25, 0.25)
        payout_daily_value = (payout_scores + 1).cumprod()

        apy = (
            ((payout_daily_value.dropna().iloc[-1]) ** (1 / len(payout_scores)))
            ** 49  # 52 weeks of compounding minus 3 for stake compounding lag
            - 1
        ) * 100

        validation_stats.loc["apy", pred_col] = apy

        if not fast_mode:
            # Check the feature exposure of your validation predictions
            max_per_era = validation_data.groupby(ERA_COL).apply(
                lambda d: d[feature_cols].corrwith(d[pred_col]).abs().max()
            )
            max_feature_exposure = max_per_era.mean()
            validation_stats.loc["max_feature_exposure", pred_col] = (
                max_feature_exposure
            )

            # Check feature neutral mean
            feature_neutral_mean = get_feature_neutral_mean(
                validation_data, pred_col, target_col, features_for_neutralization
            )
            validation_stats.loc["feature_neutral_mean", pred_col] = (
                feature_neutral_mean
            )

            # Check TB200 feature neutral mean
            tb200_feature_neutral_mean_era = validation_data.groupby(ERA_COL).apply(
                lambda df: get_feature_neutral_mean_tb_era(
                    df, pred_col, target_col, 200, features_for_neutralization
                )
            )
            validation_stats.loc["tb200_feature_neutral_mean", pred_col] = (
                tb200_feature_neutral_mean_era.mean()
            )

            # Check top and bottom 200 metrics (TB200)
            tb200_validation_correlations = fast_score_by_date(
                validation_data, [pred_col], target_col, tb=200, era_col=ERA_COL
            )

            tb200_mean = tb200_validation_correlations.mean()[pred_col]
            tb200_std = tb200_validation_correlations.std(ddof=0)[pred_col]
            tb200_sharpe = tb200_mean / tb200_std

            validation_stats.loc["tb200_mean", pred_col] = tb200_mean
            validation_stats.loc["tb200_std", pred_col] = tb200_std
            validation_stats.loc["tb200_sharpe", pred_col] = tb200_sharpe

        # MMC over validation
        mmc_scores = []
        corr_scores = []
        for _, x in validation_data.groupby(ERA_COL):
            series = neutralize_series(unif(x[pred_col]), (x[example_col]))
            mmc_scores.append(np.cov(series, x[target_col])[0, 1] / (0.29**2))
            corr_scores.append(unif(x[pred_col]).corr(x[target_col]))

        val_mmc_mean = np.mean(mmc_scores)
        val_mmc_std = np.std(mmc_scores)
        corr_plus_mmcs = [c + m for c, m in zip(corr_scores, mmc_scores)]
        corr_plus_mmc_sharpe = np.mean(corr_plus_mmcs) / np.std(corr_plus_mmcs)

        validation_stats.loc["mmc_mean", pred_col] = val_mmc_mean
        validation_stats.loc["corr_plus_mmc_sharpe", pred_col] = corr_plus_mmc_sharpe

        # Check correlation with example predictions
        per_era_corrs = validation_data.groupby(ERA_COL).apply(
            lambda d: unif(d[pred_col]).corr(unif(d[example_col]))
        )
        corr_with_example_preds = per_era_corrs.mean()
        validation_stats.loc["corr_with_example_preds", pred_col] = (
            corr_with_example_preds
        )

        # Check exposure dissimilarity per era
        tdf = validation_data.groupby(ERA_COL).apply(
            lambda df: exposure_dissimilarity_per_era(
                df, pred_col, example_col, feature_cols
            )
        )
        validation_stats.loc["exposure_dissimilarity_mean", pred_col] = tdf.mean()

    # .transpose so that stats are columns and the model_name is the row
    return validation_stats.transpose()

```