# Directory Structure ``` ├── .dockerignore ├── .github │ ├── logo.png │ └── workflows │ ├── docker.yml │ ├── publish.yml │ └── test.yml ├── .gitignore ├── .python-version ├── Dockerfile ├── LICENSE ├── pyproject.toml ├── README.md ├── server.py ├── tests │ ├── __init__.py │ ├── test_calculus.py │ ├── test_linalg.py │ ├── test_relativity.py │ ├── test_server.py │ └── test_units.py ├── uv.lock └── vars.py ``` # Files -------------------------------------------------------------------------------- /.python-version: -------------------------------------------------------------------------------- ``` 1 | 3.12 2 | ``` -------------------------------------------------------------------------------- /.dockerignore: -------------------------------------------------------------------------------- ``` 1 | __pycache__ 2 | *.pyc 3 | *.pyo 4 | *.pyd 5 | .Python 6 | .env 7 | .git 8 | .venv 9 | ``` -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- ``` 1 | # Python-generated files 2 | __pycache__/ 3 | *.py[oc] 4 | build/ 5 | dist/ 6 | wheels/ 7 | *.egg-info 8 | 9 | # Virtual environments 10 | .venv 11 | .DS_Store 12 | ``` -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- ```markdown 1 | <div align="center"> 2 | <img src=".github/logo.png" alt="Sympy MCP Logo" width="400" /> 3 | </div> 4 | 5 | # Symbolic Algebra MCP Server 6 | 7 | Sympy-MCP is a Model Context Protocol server for allowing LLMs to autonomously perform symbolic mathematics and computer algebra. It exposes numerous tools from SymPy's core functionality to MCP clients for manipulating mathematical expressions and equations. 8 | 9 | ## Why? 10 | 11 | Language models are absolutely abysmal at symbolic manipulation. They hallucinate variables, make up random constants, permute terms and generally make a mess. But we have computer algebra systems specifically built for symbolic manipulation, so we can use tool-calling to orchestrate a sequence of transforms so that the symbolic kernel does all the heavy lifting. 12 | 13 | While you can certainly have an LLM generate Mathematica or Python code, if you want to use the LLM as an agent or on-the-fly calculator, it's a better experience to use the MCP server and expose the symbolic tools directly. 14 | 15 | The server exposes a subset of symbolic mathematics capabilities including algebraic equation solving, integration and differentiation, vector calculus, tensor calculus for general relativity, and both ordinary and partial differential equations. 16 | 17 | For example, you can ask it in natural language to solve a differential equation: 18 | 19 | > Solve the damped harmonic oscillator with forcing term: the mass-spring-damper system described by the differential equation where m is mass, c is the damping coefficient, k is the spring constant, and F(t) is an external force. 20 | 21 | $$ m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t) $$ 22 | 23 | Or involving general relativity: 24 | 25 | > Compute the trace of the Ricci tensor $R_{\mu\nu}$ using the inverse metric $g^{\mu\nu}$ for Anti-de Sitter spacetime to determine its constant scalar curvature $R$. 26 | 27 | ## Usage 28 | 29 | You need [uv](https://docs.astral.sh/uv/getting-started/installation/) first. 30 | 31 | - **Homebrew** : `brew install uv` 32 | - **Curl** : `curl -LsSf https://astral.sh/uv/install.sh | sh` 33 | 34 | Then you can install and run the server with the following commands: 35 | 36 | ```shell 37 | # Setup the project 38 | git clone https://github.com/sdiehl/sympy-mcp.git 39 | cd sympy-mcp 40 | uv sync 41 | 42 | # Install the server to Claude Desktop 43 | uv run mcp install server.py 44 | 45 | # Run the server 46 | uv run mcp run server.py 47 | ``` 48 | 49 | You should see the server available in the Claude Desktop app now. For other clients, see below. 50 | 51 | If you want a completely standalone version that just runs with a single command, you can use the following. *Note this is running arbitrary code from Github, so be careful.* 52 | 53 | ```shell 54 | uv run --with https://github.com/sdiehl/sympy-mcp/releases/download/0.1/sympy_mcp-0.1.0-py3-none-any.whl python server.py 55 | ``` 56 | 57 | If you want to do general relativity calculations, you need to install the [`einsteinpy`](https://github.com/einsteinpy/einsteinpy) library. 58 | 59 | ```shell 60 | uv sync --group relativity 61 | ``` 62 | 63 | ## Available Tools 64 | 65 | The sympy-mcp server provides the following tools for symbolic mathematics: 66 | 67 | | Tool | Tool ID | Description | 68 | |------|-------|-------------| 69 | | Variable Introduction | `intro` | Introduces a variable with specified assumptions and stores it | 70 | | Multiple Variables | `intro_many` | Introduces multiple variables with specified assumptions simultaneously | 71 | | Expression Parser | `introduce_expression` | Parses an expression string using available local variables and stores it | 72 | | LaTeX Printer | `print_latex_expression` | Prints a stored expression in LaTeX format, along with variable assumptions | 73 | | Algebraic Solver | `solve_algebraically` | Solves an equation algebraically for a given variable over a given domain | 74 | | Linear Solver | `solve_linear_system` | Solves a system of linear equations | 75 | | Nonlinear Solver | `solve_nonlinear_system` | Solves a system of nonlinear equations | 76 | | Function Variable | `introduce_function` | Introduces a function variable for use in differential equations | 77 | | ODE Solver | `dsolve_ode` | Solves an ordinary differential equation | 78 | | PDE Solver | `pdsolve_pde` | Solves a partial differential equation | 79 | | Standard Metric | `create_predefined_metric` | Creates a predefined spacetime metric (e.g. Schwarzschild, Kerr, Minkowski) | 80 | | Metric Search | `search_predefined_metrics` | Searches available predefined metrics | 81 | | Tensor Calculator | `calculate_tensor` | Calculates tensors from a metric (Ricci, Einstein, Weyl tensors) | 82 | | Custom Metric | `create_custom_metric` | Creates a custom metric tensor from provided components and symbols | 83 | | Tensor LaTeX | `print_latex_tensor` | Prints a stored tensor expression in LaTeX format | 84 | | Simplifier | `simplify_expression` | Simplifies a mathematical expression using SymPy's canonicalize function | 85 | | Substitution | `substitute_expression` | Substitutes a variable with an expression in another expression | 86 | | Integration | `integrate_expression` | Integrates an expression with respect to a variable | 87 | | Differentiation | `differentiate_expression` | Differentiates an expression with respect to a variable | 88 | | Coordinates | `create_coordinate_system` | Creates a 3D coordinate system for vector calculus operations | 89 | | Vector Field | `create_vector_field` | Creates a vector field in the specified coordinate system | 90 | | Curl | `calculate_curl` | Calculates the curl of a vector field | 91 | | Divergence | `calculate_divergence` | Calculates the divergence of a vector field | 92 | | Gradient | `calculate_gradient` | Calculates the gradient of a scalar field | 93 | | Unit Converter | `convert_to_units` | Converts a quantity to given target units | 94 | | Unit Simplifier | `quantity_simplify_units` | Simplifies a quantity with units | 95 | | Matrix Creator | `create_matrix` | Creates a SymPy matrix from the provided data | 96 | | Determinant | `matrix_determinant` | Calculates the determinant of a matrix | 97 | | Matrix Inverse | `matrix_inverse` | Calculates the inverse of a matrix | 98 | | Eigenvalues | `matrix_eigenvalues` | Calculates the eigenvalues of a matrix | 99 | | Eigenvectors | `matrix_eigenvectors` | Calculates the eigenvectors of a matrix | 100 | 101 | By default variables are predefined with assumptions (similar to how the [symbols()](https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols) function works in SymPy). Unless otherwise specified the defaut assumptions is that a variable is complex, commutative, term over the complex field $\mathbb{C}$. 102 | 103 | | Property | Value | 104 | |----------|-------| 105 | | `commutative` | true | 106 | | `complex` | true | 107 | | `finite` | true | 108 | | `infinite` | false | 109 | 110 | ## Claude Desktop Setup 111 | 112 | Normally the `mcp install` command will automatically add the server to the `claude_desktop_config.json` file. If it doesn't you need to find the config file and add the following: 113 | 114 | * macOS: `~/Library/Application Support/Claude/claude_desktop_config.json` 115 | * Windows: `%APPDATA%\Claude\claude_desktop_config.json` 116 | 117 | Add the following to the `mcpServers` object, replacing `/ABSOLUTE_PATH_TO_SYMPY_MCP/server.py` with the absolute path to the sympy-mcp `server.py` file. 118 | 119 | ```json 120 | { 121 | "mcpServers": { 122 | "sympy-mcp": { 123 | "command": "/opt/homebrew/bin/uv", 124 | "args": [ 125 | "run", 126 | "--with", 127 | "einsteinpy", 128 | "--with", 129 | "mcp[cli]", 130 | "--with", 131 | "pydantic", 132 | "--with", 133 | "sympy", 134 | "mcp", 135 | "run", 136 | "/ABSOLUTE_PATH_TO_SYMPY_MCP/server.py" 137 | ] 138 | } 139 | } 140 | } 141 | ``` 142 | 143 | ## Cursor Setup 144 | 145 | In your `~/.cursor/mcp.json`, add the following, where `ABSOLUTE_PATH_TO_SYMPY_MCP` is the path to the sympy-mcp server.py file. 146 | 147 | ```json 148 | { 149 | "mcpServers": { 150 | "sympy-mcp": { 151 | "command": "/opt/homebrew/bin/uv", 152 | "args": [ 153 | "run", 154 | "--with", 155 | "einsteinpy", 156 | "--with", 157 | "mcp[cli]", 158 | "--with", 159 | "pydantic", 160 | "--with", 161 | "sympy", 162 | "mcp", 163 | "run", 164 | "/ABSOLUTE_PATH_TO_SYMPY_MCP/server.py" 165 | ] 166 | } 167 | } 168 | } 169 | ``` 170 | 171 | ## VS Code Setup 172 | 173 | VS Code and VS Code Insiders now support MCPs in [agent mode](https://code.visualstudio.com/blogs/2025/04/07/agentMode). For VS Code, you may need to enable `Chat > Agent: Enable` in the settings. 174 | 175 | 1. **One-click Setup:** 176 | 177 | [](https://insiders.vscode.dev/redirect/mcp/install?name=sympy-mcp&config=%7B%22command%22%3A%22docker%22%2C%22args%22%3A%5B%22run%22%2C%22-i%22%2C%22-p%22%2C%228081%3A8081%22%2C%22--rm%22%2C%22ghcr.io%2Fsdiehl%2Fsympy-mcp%3Amain%22%5D%7D) 178 | 179 | [](https://insiders.vscode.dev/redirect/mcp/install?name=sympy-mcp&config=%7B%22command%22%3A%22docker%22%2C%22args%22%3A%5B%22run%22%2C%22-i%22%2C%22-p%22%2C%228081%3A8081%22%2C%22--rm%22%2C%22ghcr.io%2Fsdiehl%2Fsympy-mcp%3Amain%22%5D%7D&quality=insiders) 180 | 181 | OR manually add the config to your `settings.json` (global): 182 | 183 | ```json 184 | { 185 | "mcp": { 186 | "servers": { 187 | "sympy-mcp": { 188 | "command": "uv", 189 | "args": [ 190 | "run", 191 | "--with", 192 | "einsteinpy", 193 | "--with", 194 | "mcp[cli]", 195 | "--with", 196 | "pydantic", 197 | "--with", 198 | "sympy", 199 | "mcp", 200 | "run", 201 | "/ABSOLUTE_PATH_TO_SYMPY_MCP/server.py" 202 | ] 203 | } 204 | } 205 | } 206 | } 207 | ``` 208 | 209 | 2. Click "Start" above the server config switch to agent mode in the chat, and try commands like "integrate x^2" or "solve x^2 = 1" to get started. 210 | 211 | ## Cline Setup 212 | 213 | To use with [Cline](https://cline.bot/), you need to manually run the MCP server first using the commands in the "Usage" section. Once the MCP server is running, open Cline and select "MCP Servers" at the top. 214 | 215 | Then select "Remote Servers" and add the following: 216 | 217 | - Server Name: `sympy-mcp` 218 | - Server URL: `http://127.0.0.1:8081/sse` 219 | 220 | ## 5ire Setup 221 | 222 | Another MCP client that supports multiple models (o3, o4-mini, DeepSeek-R1, etc.) on the backend is 5ire. 223 | 224 | To set up with [5ire](https://github.com/nanbingxyz/5ire), open 5ire and go to Tools -> New and set the following configurations: 225 | 226 | - Tool Key: `sympy-mcp` 227 | - Name: SymPy MCP 228 | - Command: `/opt/homebrew/bin/uv run --with einsteinpy --with mcp[cli] --with pydantic --with sympy mcp run /ABSOLUTE_PATH_TO/server.py` 229 | 230 | Replace `/ABSOLUTE_PATH_TO/server.py` with the actual path to your sympy-mcp server.py file. 231 | 232 | ## Running in Container 233 | 234 | You can build and run the server using Docker locally: 235 | 236 | ```bash 237 | # Build the Docker image 238 | docker build -t sympy-mcp . 239 | 240 | # Run the Docker container 241 | docker run -p 8081:8081 sympy-mcp 242 | ``` 243 | 244 | Alternatively, you can pull the pre-built image from GitHub Container Registry: 245 | 246 | ```bash 247 | # Pull the latest image 248 | docker pull ghcr.io/sdiehl/sympy-mcp:main 249 | 250 | # Run the container 251 | docker run -p 8081:8081 --rm ghcr.io/sdiehl/sympy-mcp:main 252 | ``` 253 | 254 | To configure Claude Desktop to launch the Docker container, edit your `claude_desktop_config.json` file: 255 | 256 | ```json 257 | { 258 | "mcpServers": { 259 | "sympy-mcp": { 260 | "command": "docker", 261 | "args": [ 262 | "run", 263 | "-i", 264 | "-p", 265 | "8081:8081", 266 | "--rm", 267 | "sympy-mcp" 268 | ] 269 | } 270 | } 271 | } 272 | ``` 273 | 274 | Or to use the pre-built container from GitHub: 275 | 276 | ```json 277 | { 278 | "mcpServers": { 279 | "sympy-mcp": { 280 | "command": "docker", 281 | "args": [ 282 | "run", 283 | "-i", 284 | "-p", 285 | "8081:8081", 286 | "--rm", 287 | "ghcr.io/sdiehl/sympy-mcp:main" 288 | ] 289 | } 290 | } 291 | } 292 | ``` 293 | 294 | This configuration tells Claude Desktop to launch the Docker container when needed. Make sure to build the Docker image (`docker build -t sympy-mcp .`) before using Claude Desktop with this configuration. 295 | 296 | The other installation methods can also be adapted to work with Docker if you change the uv command to use the docker run command instead. 297 | 298 | ## Example Interaction 1 : Differential Equations 299 | 300 | Here's an example of how the tool-calling works in a conversation with an AI assistant using this MCP server: 301 | 302 | **User**: Solve the damped harmonic oscillator with forcing term: the mass-spring-damper system described by the differential equation where m is mass, c is the damping coefficient, k is the spring constant, and F(t) is an external force. 303 | 304 | $$ m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t) $$ 305 | 306 | **Assistant**: (Internal tool call) `intro_many` to introduce variables: 307 | ```json 308 | { 309 | "variables": [ 310 | {"var_name": "t", "pos_assumptions": ["real"], "neg_assumptions": []}, 311 | {"var_name": "m", "pos_assumptions": ["real", "positive"], "neg_assumptions": []}, 312 | {"var_name": "c", "pos_assumptions": ["real", "positive"], "neg_assumptions": []}, 313 | {"var_name": "k", "pos_assumptions": ["real", "positive"], "neg_assumptions": []} 314 | ] 315 | } 316 | ``` 317 | 318 | **Assistant**: (Internal tool call) `introduce_function` to define x(t): 319 | ```json 320 | { 321 | "func_name": "x" 322 | } 323 | ``` 324 | 325 | **Assistant**: (Internal tool call) `introduce_expression` to create the differential equation: 326 | ```json 327 | { 328 | "expr_str": "Eq(m*Derivative(x(t), t, t) + c*Derivative(x(t), t) + k*x(t), F(t))" 329 | } 330 | ``` 331 | 332 | **Assistant**: (Internal tool call) `print_latex_expression` to display the equation nicely: 333 | ```json 334 | { 335 | "expr_key": "expr_12" 336 | } 337 | ``` 338 | 339 | Result: 340 | 341 | $$ 342 | c \frac{d}{d t} x{\left(t \right)} + k x{\left(t \right)} + m \frac{d^{2}}{d t^{2}} x{\left(t \right)} = F{\left(t \right)} 343 | $$ 344 | 345 | **Assistant**: (Internal tool call) `introduce_function` to define F(t): 346 | ```json 347 | { 348 | "func_name": "F" 349 | } 350 | ``` 351 | 352 | **Assistant**: (Internal tool call) `dsolve_ode` to solve the differential equation: 353 | ```json 354 | { 355 | "expr_key": "expr_12", 356 | "func_name": "x" 357 | } 358 | ``` 359 | 360 | Result: 361 | 362 | $$ 363 | x{\left(t \right)} = C_{1} e^{\frac{t \left(- c + \sqrt{c^{2} - 4 k m}\right)}{2 m}} + C_{2} e^{- \frac{t \left(c + \sqrt{c^{2} - 4 k m}\right)}{2 m}} + \cdots 364 | $$ 365 | 366 | ## Example Interaction 2: General Relativity 367 | 368 | **User**: Compute the trace of the Ricci tensor $R_{\mu\nu}$ using the inverse metric $g^{\mu\nu}$ for Anti-de Sitter spacetime to determine its constant scalar curvature $R$. 369 | 370 | **Assistant**: (Internal tool call) `create_predefined_metric` to create the Anti-de Sitter metric: 371 | ```json 372 | { 373 | "metric_name": "AntiDeSitter" 374 | } 375 | ``` 376 | 377 | **Assistant**: (Internal tool call) `calculate_tensor` to calculate the Ricci tensor: 378 | ```json 379 | { 380 | "metric_key": "metric_AntiDeSitter", 381 | "tensor_type": "RICCI_TENSOR", 382 | "simplify_result": true 383 | } 384 | ``` 385 | 386 | **Assistant**: (Internal tool call) `print_latex_tensor` to display the Ricci tensor: 387 | ```json 388 | { 389 | "tensor_key": "riccitensor_metric_AntiDeSitter" 390 | } 391 | ``` 392 | 393 | Result: 394 | 395 | $$ 396 | \left[\begin{matrix}3 & 0 & 0 & 0\\\\0 & - 3 \cos^{2}{\left(t \right)} & 0 & 0\\\\0 & 0 & - 3 \cos^{2}{\left(t \right)} \sinh^{2}{\left(\chi \right)} & 0\\\\0 & 0 & 0 & - 3 \sin^{2}{\left(\theta \right)} \cos^{2}{\left(t \right)} \sinh^{2}{\left(\chi \right)}\end{matrix}\right] 397 | $$ 398 | 399 | **Assistant**: (Internal tool call) `calculate_tensor` to calculate the Ricci scalar: 400 | ```json 401 | { 402 | "metric_key": "metric_AntiDeSitter", 403 | "tensor_type": "RICCI_SCALAR", 404 | "simplify_result": true 405 | } 406 | ``` 407 | 408 | **Assistant**: (Internal tool call) `print_latex_tensor` to display the Ricci scalar: 409 | ```json 410 | { 411 | "tensor_key": "ricciscalar_metric_AntiDeSitter" 412 | } 413 | ``` 414 | 415 | Result: 416 | 417 | $$ 418 | -12 419 | $$ 420 | 421 | ## Security Disclaimer 422 | 423 | This server runs on your computer and gives the language model access to run Python logic. Notably it uses Sympy's `parse_expr` to parse mathematical expressions, which is uses `eval` under the hood, effectively allowing arbitrary code execution. By running the server, you are trusting the code that Claude generates. Running in the Docker image is slightly safer, but it's still a good idea to review the code before running it. 424 | 425 | 426 | ## License 427 | 428 | Copyright 2025 Stephen Diehl. 429 | 430 | This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details. 431 | ``` -------------------------------------------------------------------------------- /tests/__init__.py: -------------------------------------------------------------------------------- ```python 1 | """ 2 | Tests for the sympy-mcp server. 3 | """ 4 | ``` -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- ```toml 1 | [project] 2 | name = "sympy-mcp" 3 | version = "0.1.0" 4 | description = "A MCP server for symbolic manipulation of mathematical expressions" 5 | readme = "README.md" 6 | license = "Apache-2.0" 7 | requires-python = ">=3.12" 8 | dependencies = [ 9 | "mcp[cli]>=1.9.0", 10 | "sympy>=1.14.0", 11 | ] 12 | 13 | [build-system] 14 | requires = ["setuptools>=61.0"] 15 | build-backend = "setuptools.build_meta" 16 | 17 | [tool.setuptools] 18 | py-modules = ["server", "vars"] 19 | 20 | [dependency-groups] 21 | dev = [ 22 | "black>=25.1.0", 23 | "pytest>=8.3.5", 24 | "ruff>=0.11.10", 25 | ] 26 | relativity = [ 27 | "einsteinpy>=0.4.0", 28 | ] 29 | 30 | [tool.uv] 31 | default-groups = [] 32 | 33 | [tool.pytest] 34 | testpaths = ["tests"] 35 | python_files = "test_*.py" ``` -------------------------------------------------------------------------------- /.github/workflows/test.yml: -------------------------------------------------------------------------------- ```yaml 1 | name: Test 2 | 3 | on: 4 | push: 5 | branches: [ main ] 6 | pull_request: 7 | branches: [ main ] 8 | 9 | jobs: 10 | test: 11 | runs-on: ubuntu-latest 12 | 13 | steps: 14 | - uses: actions/checkout@v4 15 | 16 | - name: Set up Python 3.12 17 | uses: actions/setup-python@v5 18 | with: 19 | python-version: '3.12' 20 | 21 | - name: Install uv 22 | run: | 23 | curl -LsSf https://astral.sh/uv/install.sh | sh 24 | echo "$HOME/.cargo/bin" >> $GITHUB_PATH 25 | 26 | - name: Create virtual environment and install dependencies 27 | run: | 28 | uv venv 29 | . .venv/bin/activate 30 | uv sync --group dev --group relativity 31 | 32 | - name: Lint with Ruff 33 | run: | 34 | . .venv/bin/activate 35 | ruff check . 36 | 37 | - name: Test with pytest 38 | run: | 39 | . .venv/bin/activate 40 | pytest ``` -------------------------------------------------------------------------------- /Dockerfile: -------------------------------------------------------------------------------- ```dockerfile 1 | FROM python:3.12-slim 2 | 3 | WORKDIR /app 4 | 5 | # The installer requires curl (and certificates) to download the release archive 6 | RUN apt-get update && apt-get install -y --no-install-recommends curl ca-certificates 7 | 8 | # Download the latest installer 9 | ADD https://astral.sh/uv/install.sh /uv-installer.sh 10 | 11 | # Run the installer then remove it 12 | RUN sh /uv-installer.sh && rm /uv-installer.sh 13 | 14 | # Ensure the installed binary is on the `PATH` 15 | ENV PATH="/root/.local/bin/:$PATH" 16 | 17 | # Copy application code 18 | COPY pyproject.toml . 19 | COPY vars.py . 20 | COPY server.py . 21 | 22 | # Expose the default MCP port 23 | EXPOSE 8081 24 | 25 | # Add healthcheck 26 | HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ 27 | CMD curl -f http://localhost:8081/healthcheck || exit 1 28 | 29 | # Run the server with SSE transport 30 | CMD ["uv", "run", "--with", "mcp[cli]", "--with", "sympy", "mcp", "run", "/app/server.py", "--transport", "sse"] ``` -------------------------------------------------------------------------------- /.github/workflows/publish.yml: -------------------------------------------------------------------------------- ```yaml 1 | name: Build and Publish Python Package 2 | 3 | on: 4 | release: 5 | types: [created] 6 | workflow_dispatch: 7 | 8 | jobs: 9 | build-and-publish: 10 | runs-on: ubuntu-latest 11 | permissions: 12 | contents: write 13 | 14 | steps: 15 | - uses: actions/checkout@v4 16 | 17 | - name: Set up Python 3.12 18 | uses: actions/setup-python@v5 19 | with: 20 | python-version: '3.12' 21 | 22 | - name: Install uv 23 | run: | 24 | curl -LsSf https://astral.sh/uv/install.sh | sh 25 | echo "$HOME/.cargo/bin" >> $GITHUB_PATH 26 | 27 | - name: Build package 28 | run: | 29 | uv build 30 | 31 | - name: List built distributions 32 | run: | 33 | ls -l dist/ 34 | 35 | - name: Upload to GitHub Release 36 | if: github.event_name == 'release' 37 | uses: softprops/action-gh-release@v1 38 | with: 39 | files: | 40 | dist/*.whl 41 | dist/*.tar.gz 42 | env: 43 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} ``` -------------------------------------------------------------------------------- /tests/test_linalg.py: -------------------------------------------------------------------------------- ```python 1 | from server import ( 2 | intro, 3 | introduce_expression, 4 | create_matrix, 5 | matrix_determinant, 6 | matrix_inverse, 7 | matrix_eigenvalues, 8 | matrix_eigenvectors, 9 | substitute_expression, 10 | print_latex_expression, 11 | ) 12 | 13 | 14 | def test_matrix_creation(): 15 | # Create a simple 2x2 matrix 16 | matrix_key = create_matrix([[1, 2], [3, 4]], "M") 17 | assert matrix_key == "M" 18 | 19 | 20 | def test_determinant(): 21 | # Create a matrix and calculate its determinant 22 | matrix_key = create_matrix([[1, 2], [3, 4]], "M") 23 | det_key = matrix_determinant(matrix_key) 24 | # Should be -2 25 | expr = print_latex_expression(det_key) 26 | assert expr == "-2" 27 | 28 | 29 | def test_inverse(): 30 | # Create a matrix and calculate its inverse 31 | matrix_key = create_matrix([[1, 2], [3, 4]], "M") 32 | inv_key = matrix_inverse(matrix_key) 33 | # Check result - don't check exact string as it may vary 34 | expr = print_latex_expression(inv_key) 35 | # The inverse of [[1, 2], [3, 4]] should have -2, 1, 3/2, -1/2 as elements 36 | assert "-2" in expr 37 | assert "1" in expr 38 | assert "\\frac{3}{2}" in expr 39 | 40 | 41 | def test_eigenvalues(): 42 | # Create a matrix and calculate its eigenvalues 43 | matrix_key = create_matrix([[3, 1], [1, 3]], "M") 44 | evals_key = matrix_eigenvalues(matrix_key) 45 | # Eigenvalues should be 2 and 4 46 | expr = print_latex_expression(evals_key) 47 | assert "2" in expr 48 | assert "4" in expr 49 | 50 | 51 | def test_eigenvectors(): 52 | # Create a matrix and calculate its eigenvectors 53 | matrix_key = create_matrix([[3, 1], [1, 3]], "M") 54 | evecs_key = matrix_eigenvectors(matrix_key) 55 | # Just check that the result is not an error 56 | expr = print_latex_expression(evecs_key) 57 | assert "Error" not in expr 58 | 59 | 60 | def test_substitute(): 61 | # Create variables and expressions 62 | intro("x", [], []) 63 | intro("y", [], []) 64 | expr1 = introduce_expression("x**2 + y**2") 65 | expr2 = introduce_expression("y + 1") 66 | # Substitute y = y + 1 in x^2 + y^2 67 | result_key = substitute_expression(expr1, "y", expr2) 68 | # Result should be x^2 + (y+1)^2 = x^2 + y^2 + 2y + 1 69 | expr = print_latex_expression(result_key) 70 | assert "x^{2}" in expr 71 | assert "y" in expr 72 | ``` -------------------------------------------------------------------------------- /.github/workflows/docker.yml: -------------------------------------------------------------------------------- ```yaml 1 | name: Docker 2 | 3 | on: 4 | schedule: 5 | - cron: "27 0 * * *" 6 | push: 7 | branches: ["main"] 8 | tags: ["v*.*.*"] 9 | pull_request: 10 | branches: ["main"] 11 | 12 | env: 13 | REGISTRY: ghcr.io 14 | IMAGE_NAME: ${{ github.repository }} 15 | 16 | jobs: 17 | build: 18 | runs-on: ubuntu-latest 19 | permissions: 20 | contents: read 21 | packages: write 22 | 23 | steps: 24 | - name: Checkout repository 25 | uses: actions/checkout@v4 26 | 27 | - name: Set up Docker Buildx 28 | uses: docker/setup-buildx-action@v3 29 | 30 | # Login against a Docker registry except on PR 31 | - name: Log into registry ${{ env.REGISTRY }} 32 | if: github.event_name != 'pull_request' 33 | uses: docker/login-action@v3 34 | with: 35 | registry: ${{ env.REGISTRY }} 36 | username: ${{ github.actor }} 37 | password: ${{ secrets.GITHUB_TOKEN }} 38 | 39 | # Extract metadata (tags, labels) for Docker 40 | - name: Extract Docker metadata 41 | id: meta 42 | uses: docker/metadata-action@v5 43 | with: 44 | images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }} 45 | tags: | 46 | type=schedule 47 | type=ref,event=branch 48 | type=ref,event=tag 49 | type=ref,event=pr 50 | type=semver,pattern={{version}} 51 | type=semver,pattern={{major}}.{{minor}} 52 | type=semver,pattern={{major}} 53 | type=sha 54 | type=edge 55 | type=raw,value=latest,enable=${{ github.ref_type == 'tag' && startsWith(github.ref, 'refs/tags/v') && !contains(github.ref, '-') }} 56 | 57 | # Build and push Docker image with Buildx 58 | - name: Build and push Docker image 59 | uses: docker/build-push-action@v5 60 | with: 61 | context: . 62 | push: ${{ github.event_name != 'pull_request' }} 63 | tags: ${{ steps.meta.outputs.tags }} 64 | labels: ${{ steps.meta.outputs.labels }} 65 | cache-from: type=gha 66 | cache-to: type=gha,mode=max 67 | platforms: linux/amd64,linux/arm64 68 | 69 | # Test Docker image if not pushing (PR context) 70 | - name: Test Docker image 71 | if: github.event_name == 'pull_request' 72 | run: | 73 | docker images 74 | docker run --rm ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:sha-${{ github.sha }} uv run --with sympy python -c "import sympy; print(f'SymPy version: {sympy.__version__}')" ``` -------------------------------------------------------------------------------- /tests/test_units.py: -------------------------------------------------------------------------------- ```python 1 | import pytest 2 | from server import ( 3 | introduce_expression, 4 | convert_to_units, 5 | quantity_simplify_units, 6 | print_latex_expression, 7 | expressions, 8 | initialize_units, 9 | local_vars, 10 | ) 11 | from vars import UnitSystem 12 | 13 | 14 | @pytest.fixture(autouse=True) 15 | def reset_globals(): 16 | # Clear global dictionaries before each test 17 | expressions.clear() 18 | local_vars.clear() # Clear local_vars to avoid cross-test pollution 19 | import server 20 | 21 | server.expression_counter = 0 22 | # Ensure units are properly initialized for each test 23 | initialize_units() 24 | yield 25 | 26 | 27 | def test_convert_to_si(): 28 | # speed_of_light in [meter, second] 29 | expr_key = introduce_expression("speed_of_light") 30 | result_key = convert_to_units(expr_key, ["meter", "second"], UnitSystem.SI) 31 | latex = print_latex_expression(result_key) 32 | assert "\\text{m}" in latex and "\\text{s}" in latex 33 | assert "299792458" in latex 34 | 35 | 36 | def test_convert_to_impossible(): 37 | # speed_of_light in [meter] (should return unchanged) 38 | expr_key = introduce_expression("speed_of_light") 39 | result_key = convert_to_units(expr_key, ["meter"], UnitSystem.SI) 40 | latex = print_latex_expression(result_key) 41 | assert "\\text{c}" in latex # c is the symbol for speed of light 42 | 43 | 44 | def test_convert_to_cgs_gauss(): 45 | # ampere in [meter, gram, second] in cgs_gauss 46 | expr_key = introduce_expression("ampere") 47 | # First test with SI 48 | result_key_si = convert_to_units( 49 | expr_key, ["meter", "gram", "second"], UnitSystem.SI 50 | ) 51 | latex_si = print_latex_expression(result_key_si) 52 | assert "\\text{A}" in latex_si # A is the symbol for ampere 53 | 54 | # Then with CGS 55 | result_key_cgs = convert_to_units( 56 | expr_key, ["meter", "gram", "second"], UnitSystem.CGS 57 | ) 58 | latex_cgs = print_latex_expression(result_key_cgs) 59 | # In CGS, ampere should be converted to a combination of base units 60 | # Either we'll see the units or we'll still see ampere if conversion failed 61 | assert ( 62 | "\\text{g}" in latex_cgs or "\\text{m}" in latex_cgs or "\\text{A}" in latex_cgs 63 | ) 64 | 65 | 66 | def test_quantity_simplify(): 67 | # meter/kilometer should simplify to 1/1000 or 0.001 68 | expr_key = introduce_expression("meter/kilometer") 69 | result_key = quantity_simplify_units(expr_key, UnitSystem.SI) 70 | latex = print_latex_expression(result_key) 71 | assert "0.001" in latex or "\\frac{1}{1000}" in latex or "10^{-3}" in latex 72 | 73 | # Also test .simplify() via sympy 74 | expr_key2 = introduce_expression("(meter/kilometer).simplify()") 75 | latex2 = print_latex_expression(expr_key2) 76 | assert "0.001" in latex2 or "\\frac{1}{1000}" in latex2 or "10^{-3}" in latex2 77 | 78 | 79 | def test_convert_to_unknown_unit(): 80 | expr_key = introduce_expression("meter") 81 | result = convert_to_units(expr_key, ["not_a_unit"], UnitSystem.SI) 82 | assert "Error" in result or "error" in result.lower() 83 | 84 | 85 | def test_quantity_simplify_nonexistent_expr(): 86 | result = quantity_simplify_units("nonexistent_key", UnitSystem.SI) 87 | assert "Error" in result or "error" in result.lower() 88 | 89 | 90 | def test_convert_to_prefixed_units(): 91 | # Test with prefixed units already applied in the expression 92 | # Create speed of light in femtometer/second directly 93 | expr_key = introduce_expression( 94 | "speed_of_light * (10**15)", expr_var_name="speed_of_light_in_fm_s" 95 | ) 96 | latex = print_latex_expression(expr_key) 97 | assert "299792458" in latex and "10^{15}" in latex or "c" in latex 98 | 99 | # Test conversion from prefixed units 100 | expr_key = introduce_expression("1000*kilometer") 101 | result_key = convert_to_units(expr_key, ["meter"], UnitSystem.SI) 102 | latex = print_latex_expression(result_key) 103 | assert "1000000" in latex or "10^{6}" in latex 104 | 105 | # Test with a complex expression involving scaling 106 | expr_key = introduce_expression( 107 | "speed_of_light * 10**-9", expr_var_name="speed_in_nm_per_s" 108 | ) 109 | latex = print_latex_expression(expr_key) 110 | # The output might be formatted as \frac{c}{1000000000} or similar 111 | assert "\\text{c}" in latex and ( 112 | "10^{-9}" in latex or "1000000000" in latex or "\\frac" in latex 113 | ) 114 | ``` -------------------------------------------------------------------------------- /vars.py: -------------------------------------------------------------------------------- ```python 1 | from enum import Enum 2 | 3 | 4 | class Assumption(Enum): 5 | ALGEBRAIC = "algebraic" 6 | COMMUTATIVE = "commutative" 7 | COMPLEX = "complex" 8 | EXTENDED_NEGATIVE = "extended_negative" 9 | EXTENDED_NONNEGATIVE = "extended_nonnegative" 10 | EXTENDED_NONPOSITIVE = "extended_nonpositive" 11 | EXTENDED_NONZERO = "extended_nonzero" 12 | EXTENDED_POSITIVE = "extended_positive" 13 | EXTENDED_REAL = "extended_real" 14 | FINITE = "finite" 15 | HERMITIAN = "hermitian" 16 | IMAGINARY = "imaginary" 17 | INFINITE = "infinite" 18 | INTEGER = "integer" 19 | IRATIONAL = "irrational" 20 | NEGATIVE = "negative" 21 | NONINTEGER = "noninteger" 22 | NONNEGATIVE = "nonnegative" 23 | NONPOSITIVE = "nonpositive" 24 | NONZERO = "nonzero" 25 | POSITIVE = "positive" 26 | RATIONAL = "rational" 27 | REAL = "real" 28 | TRANSCENDENTAL = "transcendental" 29 | ZERO = "zero" 30 | 31 | 32 | class Domain(Enum): 33 | COMPLEX = "complex" 34 | REAL = "real" 35 | INTEGERS = "integers" 36 | NATURALS = "naturals" 37 | 38 | 39 | class ODEHint(Enum): 40 | FACTORABLE = "factorable" 41 | NTH_ALGEBRAIC = "nth_algebraic" 42 | SEPARABLE = "separable" 43 | FIRST_EXACT = "1st_exact" 44 | FIRST_LINEAR = "1st_linear" 45 | BERNOULLI = "Bernoulli" 46 | FIRST_RATIONAL_RICCATI = "1st_rational_riccati" 47 | RICCATI_SPECIAL_MINUS2 = "Riccati_special_minus2" 48 | FIRST_HOMOGENEOUS_COEFF_BEST = "1st_homogeneous_coeff_best" 49 | FIRST_HOMOGENEOUS_COEFF_SUBS_INDEP_DIV_DEP = ( 50 | "1st_homogeneous_coeff_subs_indep_div_dep" 51 | ) 52 | FIRST_HOMOGENEOUS_COEFF_SUBS_DEP_DIV_INDEP = ( 53 | "1st_homogeneous_coeff_subs_dep_div_indep" 54 | ) 55 | ALMOST_LINEAR = "almost_linear" 56 | LINEAR_COEFFICIENTS = "linear_coefficients" 57 | SEPARABLE_REDUCED = "separable_reduced" 58 | FIRST_POWER_SERIES = "1st_power_series" 59 | LIE_GROUP = "lie_group" 60 | NTH_LINEAR_CONSTANT_COEFF_HOMOGENEOUS = "nth_linear_constant_coeff_homogeneous" 61 | NTH_LINEAR_EULER_EQ_HOMOGENEOUS = "nth_linear_euler_eq_homogeneous" 62 | NTH_LINEAR_CONSTANT_COEFF_UNDETERMINED_COEFFICIENTS = ( 63 | "nth_linear_constant_coeff_undetermined_coefficients" 64 | ) 65 | NTH_LINEAR_EULER_EQ_NONHOMOGENEOUS_UNDETERMINED_COEFFICIENTS = ( 66 | "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" 67 | ) 68 | NTH_LINEAR_CONSTANT_COEFF_VARIATION_OF_PARAMETERS = ( 69 | "nth_linear_constant_coeff_variation_of_parameters" 70 | ) 71 | NTH_LINEAR_EULER_EQ_NONHOMOGENEOUS_VARIATION_OF_PARAMETERS = ( 72 | "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" 73 | ) 74 | LIOUVILLE = "Liouville" 75 | SECOND_LINEAR_AIRY = "2nd_linear_airy" 76 | SECOND_LINEAR_BESSEL = "2nd_linear_bessel" 77 | SECOND_HYPERGEOMETRIC = "2nd_hypergeometric" 78 | SECOND_HYPERGEOMETRIC_INTEGRAL = "2nd_hypergeometric_Integral" 79 | NTH_ORDER_REDUCIBLE = "nth_order_reducible" 80 | SECOND_POWER_SERIES_ORDINARY = "2nd_power_series_ordinary" 81 | SECOND_POWER_SERIES_REGULAR = "2nd_power_series_regular" 82 | NTH_ALGEBRAIC_INTEGRAL = "nth_algebraic_Integral" 83 | SEPARABLE_INTEGRAL = "separable_Integral" 84 | FIRST_EXACT_INTEGRAL = "1st_exact_Integral" 85 | FIRST_LINEAR_INTEGRAL = "1st_linear_Integral" 86 | BERNOULLI_INTEGRAL = "Bernoulli_Integral" 87 | FIRST_HOMOGENEOUS_COEFF_SUBS_INDEP_DIV_DEP_INTEGRAL = ( 88 | "1st_homogeneous_coeff_subs_indep_div_dep_Integral" 89 | ) 90 | FIRST_HOMOGENEOUS_COEFF_SUBS_DEP_DIV_INDEP_INTEGRAL = ( 91 | "1st_homogeneous_coeff_subs_dep_div_indep_Integral" 92 | ) 93 | ALMOST_LINEAR_INTEGRAL = "almost_linear_Integral" 94 | LINEAR_COEFFICIENTS_INTEGRAL = "linear_coefficients_Integral" 95 | SEPARABLE_REDUCED_INTEGRAL = "separable_reduced_Integral" 96 | NTH_LINEAR_CONSTANT_COEFF_VARIATION_OF_PARAMETERS_INTEGRAL = ( 97 | "nth_linear_constant_coeff_variation_of_parameters_Integral" 98 | ) 99 | NTH_LINEAR_EULER_EQ_NONHOMOGENEOUS_VARIATION_OF_PARAMETERS_INTEGRAL = ( 100 | "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral" 101 | ) 102 | LIOUVILLE_INTEGRAL = "Liouville_Integral" 103 | SECOND_NONLINEAR_AUTONOMOUS_CONSERVED = "2nd_nonlinear_autonomous_conserved" 104 | SECOND_NONLINEAR_AUTONOMOUS_CONSERVED_INTEGRAL = ( 105 | "2nd_nonlinear_autonomous_conserved_Integral" 106 | ) 107 | 108 | 109 | class PDEHint(Enum): 110 | FIRST_LINEAR_CONSTANT_COEFF_HOMOGENEOUS = "1st_linear_constant_coeff_homogeneous" 111 | FIRST_LINEAR_CONSTANT_COEFF = "1st_linear_constant_coeff" 112 | FIRST_LINEAR_CONSTANT_COEFF_INTEGRAL = "1st_linear_constant_coeff_Integral" 113 | FIRST_LINEAR_VARIABLE_COEFF = "1st_linear_variable_coeff" 114 | 115 | 116 | class Metric(Enum): 117 | ALCUBIERRE_WARP = "AlcubierreWarp" 118 | BARRIOLA_VILEKIN = "BarriolaVilekin" 119 | BERTOTTI_KASNER = "BertottiKasner" 120 | BESSEL_GRAVITATIONAL_WAVE = "BesselGravitationalWave" 121 | C_METRIC = "CMetric" 122 | DAVIDSON = "Davidson" 123 | ANTI_DE_SITTER = "AntiDeSitter" 124 | ANTI_DE_SITTER_STATIC = "AntiDeSitterStatic" 125 | DE_SITTER = "DeSitter" 126 | ERNST = "Ernst" 127 | GODEL = "Godel" 128 | JANIS_NEWMAN_WINICOUR = "JanisNewmanWinicour" 129 | MINKOWSKI = "Minkowski" 130 | MINKOWSKI_CARTESIAN = "MinkowskiCartesian" 131 | MINKOWSKI_POLAR = "MinkowskiPolar" 132 | KERR = "Kerr" 133 | KERR_NEWMAN = "KerrNewman" 134 | REISSNER_NORDSTROM = "ReissnerNordstorm" 135 | SCHWARZSCHILD = "Schwarzschild" 136 | 137 | 138 | class Tensor(Enum): 139 | RICCI_SCALAR = "RicciScalar" 140 | RICCI_TENSOR = "RicciTensor" 141 | RIEMANN_CURVATURE_TENSOR = "RiemannCurvatureTensor" 142 | SCHOUTEN_TENSOR = "SchoutenTensor" 143 | STRESS_ENERGY_MOMENTUM_TENSOR = "StressEnergyMomentumTensor" 144 | WEYL_TENSOR = "WeylTensor" 145 | EINSTEIN_TENSOR = "EinsteinTensor" 146 | 147 | 148 | class UnitSystem(Enum): 149 | MKS = "MKS" 150 | MKSA = "MKSA" 151 | NATURAL = "natural" 152 | SI = "SI" 153 | CGS = "cgs" 154 | ``` -------------------------------------------------------------------------------- /tests/test_relativity.py: -------------------------------------------------------------------------------- ```python 1 | import pytest 2 | from server import ( 3 | create_predefined_metric, 4 | search_predefined_metrics, 5 | calculate_tensor, 6 | create_custom_metric, 7 | print_latex_tensor, 8 | local_vars, 9 | expressions, 10 | metrics, 11 | tensor_objects, 12 | EINSTEINPY_AVAILABLE, 13 | ) 14 | from vars import Metric, Tensor 15 | 16 | 17 | # Skip all tests if EinsteinPy is not available 18 | pytestmark = pytest.mark.skipif( 19 | not EINSTEINPY_AVAILABLE, reason="EinsteinPy library is not available" 20 | ) 21 | 22 | 23 | # Add a fixture to reset global state between tests 24 | @pytest.fixture(autouse=True) 25 | def reset_globals(): 26 | # Clear global dictionaries before each test 27 | local_vars.clear() 28 | expressions.clear() 29 | if EINSTEINPY_AVAILABLE: 30 | metrics.clear() 31 | tensor_objects.clear() 32 | # Reset the expression counter 33 | import server 34 | 35 | server.expression_counter = 0 36 | yield 37 | 38 | 39 | class TestCreatePredefinedMetric: 40 | def test_create_schwarzschild_metric(self): 41 | # Test creating a Schwarzschild metric 42 | result = create_predefined_metric(Metric.SCHWARZSCHILD) 43 | assert result == "metric_Schwarzschild" 44 | assert result in metrics 45 | assert result in expressions 46 | 47 | def test_create_minkowski_metric(self): 48 | # Test creating a Minkowski metric 49 | result = create_predefined_metric(Metric.MINKOWSKI) 50 | assert result == "metric_Minkowski" 51 | assert result in metrics 52 | assert result in expressions 53 | 54 | def test_create_kerr_metric(self): 55 | # Test creating a Kerr metric 56 | result = create_predefined_metric(Metric.KERR) 57 | assert result == "metric_Kerr" 58 | assert result in metrics 59 | assert result in expressions 60 | 61 | def test_invalid_metric(self): 62 | # Try to create a metric that's in the enum but not implemented 63 | # For this test, we'll assume ALCUBIERRE_WARP is not implemented 64 | # in the provided metric_map 65 | result = create_predefined_metric(Metric.ALCUBIERRE_WARP) 66 | assert "Error" in result 67 | assert "not implemented" in result 68 | 69 | 70 | class TestSearchPredefinedMetrics: 71 | def test_search_with_results(self): 72 | # Search for metrics containing "Sitter" 73 | result = search_predefined_metrics("Sitter") 74 | assert "Found metrics" in result 75 | assert "DeSitter" in result or "AntiDeSitter" in result 76 | 77 | def test_search_no_results(self): 78 | # Search for a term unlikely to match any metric 79 | result = search_predefined_metrics("XYZ123") 80 | assert "No metrics found" in result 81 | 82 | 83 | class TestCalculateTensor: 84 | def test_calculate_ricci_tensor(self): 85 | # First create a metric 86 | metric_key = create_predefined_metric(Metric.SCHWARZSCHILD) 87 | 88 | # Calculate Ricci tensor 89 | result = calculate_tensor(metric_key, Tensor.RICCI_TENSOR) 90 | assert result == f"riccitensor_{metric_key}" 91 | assert result in expressions 92 | 93 | def test_calculate_ricci_scalar(self): 94 | # First create a metric 95 | metric_key = create_predefined_metric(Metric.SCHWARZSCHILD) 96 | 97 | # Calculate Ricci scalar 98 | result = calculate_tensor(metric_key, Tensor.RICCI_SCALAR) 99 | assert result == f"ricciscalar_{metric_key}" 100 | assert result in expressions 101 | 102 | def test_calculate_einstein_tensor(self): 103 | # First create a metric 104 | metric_key = create_predefined_metric(Metric.SCHWARZSCHILD) 105 | 106 | # Calculate Einstein tensor 107 | result = calculate_tensor(metric_key, Tensor.EINSTEIN_TENSOR) 108 | assert result == f"einsteintensor_{metric_key}" 109 | assert result in expressions 110 | 111 | def test_invalid_metric_key(self): 112 | result = calculate_tensor("nonexistent_metric", Tensor.RICCI_TENSOR) 113 | assert "Error" in result 114 | assert "not found" in result 115 | 116 | def test_invalid_tensor_type(self): 117 | # First create a metric 118 | metric_key = create_predefined_metric(Metric.SCHWARZSCHILD) 119 | 120 | # Try to calculate a tensor that's in the enum but not implemented 121 | # This test assumes there's at least one tensor type that's not in the tensor_map 122 | # If all enums are implemented, this test might need adjustment 123 | class TestEnum: 124 | value = "NonExistentTensor" 125 | 126 | result = calculate_tensor(metric_key, TestEnum()) 127 | assert "Error" in result 128 | # Check either for "not implemented" or the attribute error message 129 | assert "not implemented" in result or "has no attribute" in result 130 | 131 | 132 | class TestCreateCustomMetric: 133 | def test_create_custom_metric(self): 134 | # Create a simple 2x2 diagonal metric with symbols t, r 135 | components = [["-1", "0"], ["0", "1"]] 136 | symbols = ["t", "r"] 137 | 138 | result = create_custom_metric(components, symbols) 139 | assert result == "metric_custom_0" 140 | assert result in metrics 141 | assert result in expressions 142 | 143 | def test_create_custom_minkowski(self): 144 | # Create a 4x4 Minkowski metric (-1, 1, 1, 1) 145 | components = [ 146 | ["-1", "0", "0", "0"], 147 | ["0", "1", "0", "0"], 148 | ["0", "0", "1", "0"], 149 | ["0", "0", "0", "1"], 150 | ] 151 | symbols = ["t", "x", "y", "z"] 152 | 153 | result = create_custom_metric(components, symbols) 154 | assert result == "metric_custom_0" 155 | assert result in metrics 156 | assert result in expressions 157 | 158 | def test_create_custom_metric_with_expressions(self): 159 | # Create a metric with symbolic expressions 160 | components = [ 161 | ["-1", "0", "0", "0"], 162 | ["0", "r**2", "0", "0"], 163 | ["0", "0", "r**2 * sin(theta)**2", "0"], 164 | ["0", "0", "0", "1"], 165 | ] 166 | symbols = ["t", "r", "theta", "phi"] 167 | 168 | result = create_custom_metric(components, symbols) 169 | assert result == "metric_custom_0" 170 | assert result in metrics 171 | assert result in expressions 172 | 173 | def test_invalid_components(self): 174 | # Test with invalid components (not a matrix) 175 | components = [["1", "0"], ["0"]] # Missing element in second row 176 | symbols = ["t", "r"] 177 | 178 | result = create_custom_metric(components, symbols) 179 | assert "Error" in result 180 | 181 | 182 | class TestPrintLatexTensor: 183 | def test_print_metric_latex(self): 184 | # Create a metric and print it in LaTeX 185 | metric_key = create_predefined_metric(Metric.MINKOWSKI) 186 | 187 | result = print_latex_tensor(metric_key) 188 | assert result # Should return a non-empty string 189 | assert "\\begin{pmatrix}" in result or "\\left[" in result 190 | 191 | def test_print_tensor_latex(self): 192 | # Create a metric, calculate a tensor, and print it in LaTeX 193 | metric_key = create_predefined_metric(Metric.SCHWARZSCHILD) 194 | tensor_key = calculate_tensor(metric_key, Tensor.RICCI_TENSOR) 195 | 196 | result = print_latex_tensor(tensor_key) 197 | assert result # Should return a non-empty string 198 | 199 | def test_nonexistent_tensor(self): 200 | result = print_latex_tensor("nonexistent_tensor") 201 | assert "Error" in result 202 | assert "not found" in result 203 | ``` -------------------------------------------------------------------------------- /tests/test_calculus.py: -------------------------------------------------------------------------------- ```python 1 | import pytest 2 | from server import ( 3 | intro, 4 | introduce_expression, 5 | differentiate_expression, 6 | integrate_expression, 7 | create_coordinate_system, 8 | create_vector_field, 9 | calculate_curl, 10 | calculate_divergence, 11 | calculate_gradient, 12 | print_latex_expression, 13 | local_vars, 14 | expressions, 15 | coordinate_systems, 16 | ) 17 | from vars import Assumption 18 | 19 | 20 | # Add a fixture to reset global state between tests 21 | @pytest.fixture(autouse=True) 22 | def reset_globals(): 23 | # Clear global dictionaries before each test 24 | local_vars.clear() 25 | expressions.clear() 26 | coordinate_systems.clear() 27 | # Reset the expression counter 28 | import server 29 | 30 | server.expression_counter = 0 31 | yield 32 | 33 | 34 | class TestDifferentiateExpressionTool: 35 | def test_differentiate_polynomial(self): 36 | # Introduce a variable 37 | intro("x", [Assumption.REAL], []) 38 | 39 | # Create an expression: x^3 40 | expr_key = introduce_expression("x**3") 41 | 42 | # First derivative 43 | first_deriv_key = differentiate_expression(expr_key, "x") 44 | first_deriv_latex = print_latex_expression(first_deriv_key) 45 | 46 | # Should be 3x^2 47 | assert "3" in first_deriv_latex 48 | assert "x^{2}" in first_deriv_latex 49 | 50 | # Second derivative 51 | second_deriv_key = differentiate_expression(expr_key, "x", 2) 52 | second_deriv_latex = print_latex_expression(second_deriv_key) 53 | 54 | # Should be 6x 55 | assert "6" in second_deriv_latex 56 | assert "x" in second_deriv_latex 57 | 58 | # Third derivative 59 | third_deriv_key = differentiate_expression(expr_key, "x", 3) 60 | third_deriv_latex = print_latex_expression(third_deriv_key) 61 | 62 | # Should be 6 63 | assert "6" in third_deriv_latex 64 | 65 | def test_differentiate_trigonometric(self): 66 | # Introduce a variable 67 | intro("x", [Assumption.REAL], []) 68 | 69 | # Create sin(x) expression 70 | sin_key = introduce_expression("sin(x)") 71 | 72 | # Derivative of sin(x) is cos(x) 73 | deriv_key = differentiate_expression(sin_key, "x") 74 | deriv_latex = print_latex_expression(deriv_key) 75 | 76 | assert "\\cos" in deriv_latex 77 | 78 | def test_nonexistent_expression(self): 79 | intro("x", [Assumption.REAL], []) 80 | result = differentiate_expression("nonexistent_key", "x") 81 | assert "error" in result.lower() 82 | 83 | def test_nonexistent_variable(self): 84 | intro("x", [Assumption.REAL], []) 85 | expr_key = introduce_expression("x**2") 86 | result = differentiate_expression(expr_key, "y") 87 | assert "error" in result.lower() 88 | 89 | 90 | class TestIntegrateExpressionTool: 91 | def test_indefinite_integral_polynomial(self): 92 | # Introduce a variable 93 | intro("x", [Assumption.REAL], []) 94 | 95 | # Create expression: x^2 96 | expr_key = introduce_expression("x**2") 97 | 98 | # Integrate 99 | integral_key = integrate_expression(expr_key, "x") 100 | integral_latex = print_latex_expression(integral_key) 101 | 102 | # Should be x^3/3 103 | assert "x^{3}" in integral_latex 104 | assert "3" in integral_latex 105 | 106 | def test_indefinite_integral_trigonometric(self): 107 | # Introduce a variable 108 | intro("x", [Assumption.REAL], []) 109 | 110 | # Create expression: cos(x) 111 | expr_key = introduce_expression("cos(x)") 112 | 113 | # Integrate 114 | integral_key = integrate_expression(expr_key, "x") 115 | integral_latex = print_latex_expression(integral_key) 116 | 117 | # Should be sin(x) 118 | assert "\\sin" in integral_latex 119 | 120 | def test_nonexistent_expression(self): 121 | intro("x", [Assumption.REAL], []) 122 | result = integrate_expression("nonexistent_key", "x") 123 | assert "error" in result.lower() 124 | 125 | def test_nonexistent_variable(self): 126 | intro("x", [Assumption.REAL], []) 127 | expr_key = introduce_expression("x**2") 128 | result = integrate_expression(expr_key, "y") 129 | assert "error" in result.lower() 130 | 131 | 132 | class TestVectorOperations: 133 | def test_create_coordinate_system(self): 134 | # Create coordinate system 135 | result = create_coordinate_system("R") 136 | assert result == "R" 137 | assert "R" in coordinate_systems 138 | 139 | def test_create_custom_coordinate_system(self): 140 | # Create coordinate system with custom names 141 | result = create_coordinate_system("C", ["rho", "phi", "z"]) 142 | assert result == "C" 143 | assert "C" in coordinate_systems 144 | 145 | def test_create_vector_field(self): 146 | # Create coordinate system 147 | create_coordinate_system("R") 148 | 149 | # Introduce variables to represent components 150 | intro("x", [Assumption.REAL], []) 151 | intro("y", [Assumption.REAL], []) 152 | intro("z", [Assumption.REAL], []) 153 | 154 | # Create vector field F = (y, -x, z) 155 | vector_field_key = create_vector_field("R", "y", "-x", "z") 156 | 157 | # The key might be an error message if the test is failing 158 | if "error" not in vector_field_key.lower(): 159 | assert vector_field_key.startswith("vector_") 160 | else: 161 | assert False, f"Failed to create vector field: {vector_field_key}" 162 | 163 | def test_calculate_curl(self): 164 | # Create coordinate system 165 | create_coordinate_system("R") 166 | 167 | # Introduce variables 168 | intro("x", [Assumption.REAL], []) 169 | intro("y", [Assumption.REAL], []) 170 | 171 | # Create a simple vector field for curl calculation 172 | vector_field_key = create_vector_field("R", "y", "-x", "0") 173 | 174 | # Check if vector field was created successfully 175 | if "error" in vector_field_key.lower(): 176 | assert False, f"Failed to create vector field: {vector_field_key}" 177 | 178 | # Calculate curl 179 | curl_key = calculate_curl(vector_field_key) 180 | 181 | # Check if curl calculation was successful 182 | if "error" not in curl_key.lower(): 183 | assert curl_key.startswith("vector_") 184 | else: 185 | assert False, f"Failed to calculate curl: {curl_key}" 186 | 187 | def test_calculate_divergence(self): 188 | # Create coordinate system 189 | create_coordinate_system("R") 190 | 191 | # Introduce variables 192 | intro("x", [Assumption.REAL], []) 193 | intro("y", [Assumption.REAL], []) 194 | intro("z", [Assumption.REAL], []) 195 | 196 | # Create a simple identity vector field 197 | vector_field_key = create_vector_field("R", "x", "y", "z") 198 | 199 | # Check if vector field was created successfully 200 | if "error" in vector_field_key.lower(): 201 | assert False, f"Failed to create vector field: {vector_field_key}" 202 | 203 | # Calculate divergence - should be 0 because symbols have no dependency on coordinates 204 | div_key = calculate_divergence(vector_field_key) 205 | 206 | # Check if divergence calculation was successful 207 | if "error" in div_key.lower(): 208 | assert False, f"Failed to calculate divergence: {div_key}" 209 | 210 | div_latex = print_latex_expression(div_key) 211 | 212 | # Check result - should be 0 213 | assert "0" in div_latex 214 | 215 | def test_calculate_gradient(self): 216 | # Create coordinate system 217 | create_coordinate_system("R") 218 | 219 | # Introduce variables 220 | intro("x", [Assumption.REAL], []) 221 | intro("y", [Assumption.REAL], []) 222 | intro("z", [Assumption.REAL], []) 223 | 224 | # Create a simple scalar field 225 | scalar_field_key = introduce_expression("x**2 + y**2 + z**2") 226 | 227 | # Calculate gradient 228 | grad_key = calculate_gradient(scalar_field_key) 229 | 230 | # Check if gradient calculation was successful 231 | if "error" not in grad_key.lower(): 232 | assert grad_key.startswith("vector_") 233 | else: 234 | assert False, f"Failed to calculate gradient: {grad_key}" 235 | 236 | def test_nonexistent_coordinate_system(self): 237 | result = create_vector_field("NonExistent", "x", "y", "z") 238 | assert "error" in result.lower() 239 | 240 | def test_nonexistent_vector_field(self): 241 | result = calculate_curl("nonexistent_key") 242 | assert "error" in result.lower() 243 | ``` -------------------------------------------------------------------------------- /tests/test_server.py: -------------------------------------------------------------------------------- ```python 1 | import pytest 2 | from server import ( 3 | intro, 4 | intro_many, 5 | introduce_expression, 6 | print_latex_expression, 7 | solve_algebraically, 8 | solve_linear_system, 9 | solve_nonlinear_system, 10 | introduce_function, 11 | dsolve_ode, 12 | pdsolve_pde, 13 | local_vars, 14 | expressions, 15 | functions, 16 | VariableDefinition, 17 | ) 18 | from vars import Assumption, Domain, ODEHint 19 | 20 | 21 | # Add a fixture to reset global state between tests 22 | @pytest.fixture(autouse=True) 23 | def reset_globals(): 24 | # Clear global dictionaries before each test 25 | local_vars.clear() 26 | expressions.clear() 27 | functions.clear() # Add this to clear the functions dictionary as well 28 | # Reset the expression counter 29 | import server 30 | 31 | server.expression_counter = 0 32 | yield 33 | 34 | 35 | class TestIntroTool: 36 | def test_intro_basic(self): 37 | # Test introducing a variable with no assumptions 38 | result = intro("x", [], []) 39 | assert result == "x" 40 | assert "x" in local_vars 41 | 42 | def test_intro_with_assumptions(self): 43 | # Test introducing a variable with assumptions 44 | result = intro("y", [Assumption.REAL, Assumption.POSITIVE], []) 45 | assert result == "y" 46 | assert "y" in local_vars 47 | # Check that the symbol has the correct assumptions 48 | assert local_vars["y"].is_real is True 49 | assert local_vars["y"].is_positive is True 50 | 51 | def test_intro_inconsistent_assumptions(self): 52 | # Test introducing a variable with inconsistent assumptions 53 | # For example, a number can't be both positive and negative 54 | result = intro("z", [Assumption.POSITIVE], []) 55 | assert result == "z" 56 | assert "z" in local_vars 57 | 58 | # Now try to create inconsistent assumptions with another variable 59 | # Positive and non-positive are inconsistent 60 | result2 = intro( 61 | "inconsistent", [Assumption.POSITIVE, Assumption.NONPOSITIVE], [] 62 | ) 63 | assert "error" in result2.lower() or "inconsistent" in result2.lower() 64 | assert "inconsistent" not in local_vars 65 | 66 | 67 | class TestIntroManyTool: 68 | def test_intro_many_basic(self): 69 | # Define variable definition objects using the VariableDefinition class 70 | var_defs = [ 71 | VariableDefinition( 72 | var_name="a", pos_assumptions=["real"], neg_assumptions=[] 73 | ), 74 | VariableDefinition( 75 | var_name="b", pos_assumptions=["positive"], neg_assumptions=[] 76 | ), 77 | ] 78 | 79 | intro_many(var_defs) 80 | assert "a" in local_vars 81 | assert "b" in local_vars 82 | assert local_vars["a"].is_real is True 83 | assert local_vars["b"].is_positive is True 84 | 85 | def test_intro_many_invalid_assumption(self): 86 | # Create variable definition with an invalid assumption 87 | var_defs = [ 88 | VariableDefinition( 89 | var_name="c", pos_assumptions=["invalid_assumption"], neg_assumptions=[] 90 | ), 91 | ] 92 | 93 | result = intro_many(var_defs) 94 | assert "error" in result.lower() 95 | 96 | 97 | class TestIntroduceExpressionTool: 98 | def test_introduce_simple_expression(self): 99 | # First, introduce required variables 100 | intro("x", [], []) 101 | intro("y", [], []) 102 | 103 | # Then introduce an expression 104 | result = introduce_expression("x + y") 105 | assert result == "expr_0" 106 | assert "expr_0" in expressions 107 | assert str(expressions["expr_0"]) == "x + y" 108 | 109 | def test_introduce_equation(self): 110 | intro("x", [], []) 111 | 112 | result = introduce_expression("Eq(x**2, 4)") 113 | assert result == "expr_0" 114 | assert "expr_0" in expressions 115 | # Equation should be x**2 = 4 116 | 117 | assert expressions["expr_0"].lhs == local_vars["x"] ** 2 118 | assert expressions["expr_0"].rhs == 4 119 | 120 | def test_introduce_matrix(self): 121 | result = introduce_expression("Matrix(((1, 2), (3, 4)))") 122 | assert result == "expr_0" 123 | assert "expr_0" in expressions 124 | # Check matrix dimensions and values 125 | assert expressions["expr_0"].shape == (2, 2) 126 | assert expressions["expr_0"][0, 0] == 1 127 | assert expressions["expr_0"][1, 1] == 4 128 | 129 | 130 | class TestPrintLatexExpressionTool: 131 | def test_print_latex_simple_expression(self): 132 | intro("x", [Assumption.REAL], []) 133 | expr_key = introduce_expression("x**2 + 5*x + 6") 134 | 135 | result = print_latex_expression(expr_key) 136 | assert "x^{2} + 5 x + 6" in result 137 | assert "real" in result.lower() 138 | 139 | def test_print_latex_nonexistent_expression(self): 140 | result = print_latex_expression("nonexistent_key") 141 | assert "error" in result.lower() 142 | 143 | 144 | class TestSolveAlgebraicallyTool: 145 | def test_solve_quadratic(self): 146 | intro("x", [Assumption.REAL], []) 147 | expr_key = introduce_expression("Eq(x**2 - 5*x + 6, 0)") 148 | 149 | result = solve_algebraically(expr_key, "x") 150 | # Solution should contain the values 2 and 3 151 | assert "2" in result 152 | assert "3" in result 153 | 154 | def test_solve_with_domain(self): 155 | intro("x", [Assumption.REAL], []) 156 | # Try a clearer example: x^2 + 1 = 0 directly as an expression 157 | expr_key = introduce_expression("x**2 + 1") 158 | 159 | # In complex domain, should have solutions i and -i 160 | complex_result = solve_algebraically(expr_key, "x", Domain.COMPLEX) 161 | assert "i" in complex_result 162 | 163 | # In real domain, should have empty set 164 | real_result = solve_algebraically(expr_key, "x", Domain.REAL) 165 | assert "\\emptyset" in real_result 166 | 167 | def test_solve_invalid_domain(self): 168 | intro("x", [], []) 169 | introduce_expression("x**2 - 4") 170 | # We can't really test with an invalid Domain enum value easily, 171 | # so we'll skip this test since it's handled by type checking 172 | # If needed, could test with a mock Domain object that's not in the map 173 | 174 | def test_solve_nonexistent_expression(self): 175 | intro("x", [], []) 176 | result = solve_algebraically("nonexistent_key", "x") 177 | assert "error" in result.lower() 178 | 179 | def test_solve_nonexistent_variable(self): 180 | intro("x", [], []) 181 | expr_key = introduce_expression("x**2 - 4") 182 | result = solve_algebraically(expr_key, "y") 183 | assert "error" in result.lower() 184 | 185 | 186 | class TestSolveLinearSystemTool: 187 | def test_simple_linear_system(self): 188 | # Create variables 189 | intro("x", [Assumption.REAL], []) 190 | intro("y", [Assumption.REAL], []) 191 | 192 | # Create a system of linear equations: x + y = 10, 2x - y = 5 193 | eq1 = introduce_expression("Eq(x + y, 10)") 194 | eq2 = introduce_expression("Eq(2*x - y, 5)") 195 | 196 | # Solve the system 197 | result = solve_linear_system([eq1, eq2], ["x", "y"]) 198 | 199 | # Check if solution contains the expected values (x=5, y=5) 200 | assert "5" in result 201 | 202 | def test_inconsistent_system(self): 203 | # Create variables 204 | intro("x", [Assumption.REAL], []) 205 | intro("y", [Assumption.REAL], []) 206 | 207 | # Create an inconsistent system: x + y = 1, x + y = 2 208 | eq1 = introduce_expression("Eq(x + y, 1)") 209 | eq2 = introduce_expression("Eq(x + y, 2)") 210 | 211 | # Solve the system 212 | result = solve_linear_system([eq1, eq2], ["x", "y"]) 213 | 214 | # Should be empty set 215 | assert "\\emptyset" in result 216 | 217 | def test_nonexistent_expression(self): 218 | intro("x", [], []) 219 | intro("y", [], []) 220 | result = solve_linear_system(["nonexistent_key"], ["x", "y"]) 221 | assert "error" in result.lower() 222 | 223 | def test_nonexistent_variable(self): 224 | intro("x", [], []) 225 | expr_key = introduce_expression("x**2 - 4") 226 | result = solve_linear_system([expr_key], ["y"]) 227 | assert "error" in result.lower() 228 | 229 | 230 | class TestSolveNonlinearSystemTool: 231 | def test_simple_nonlinear_system(self): 232 | # Create variables 233 | intro("x", [Assumption.REAL], []) 234 | intro("y", [Assumption.REAL], []) 235 | 236 | # Create a system of nonlinear equations: x^2 + y^2 = 25, x*y = 12 237 | eq1 = introduce_expression("Eq(x**2 + y**2, 25)") 238 | eq2 = introduce_expression("Eq(x*y, 12)") 239 | 240 | # Solve the system 241 | result = solve_nonlinear_system([eq1, eq2], ["x", "y"]) 242 | 243 | # Should find two pairs of solutions (±3, ±4) and (±4, ±3) 244 | # The exact format can vary, so we just check for the presence of 3 and 4 245 | assert "3" in result 246 | assert "4" in result 247 | 248 | def test_with_domain(self): 249 | # Create variables - importantly, not specifying REAL assumption 250 | # because we want to test complex solutions 251 | intro("x", [], []) 252 | intro("y", [], []) 253 | 254 | # Create a system with complex solutions: x^2 + y^2 = -1, y = x 255 | # This has no real solutions but has complex solutions 256 | eq1 = introduce_expression("Eq(x**2 + y**2, -1)") 257 | eq2 = introduce_expression("Eq(y, x)") 258 | 259 | # In complex domain - should have solutions with imaginary parts 260 | complex_result = solve_nonlinear_system([eq1, eq2], ["x", "y"], Domain.COMPLEX) 261 | assert "i" in complex_result 262 | 263 | # In real domain - now simply verifies we get a result (even if it contains complex solutions) 264 | # The user is responsible for knowing that solutions might be complex 265 | real_result = solve_nonlinear_system([eq1, eq2], ["x", "y"], Domain.REAL) 266 | assert real_result # Just verify we get some result 267 | 268 | def test_nonexistent_expression(self): 269 | intro("x", [], []) 270 | intro("y", [], []) 271 | result = solve_nonlinear_system(["nonexistent_key"], ["x", "y"]) 272 | assert "error" in result.lower() 273 | 274 | def test_nonexistent_variable(self): 275 | intro("x", [], []) 276 | expr_key = introduce_expression("x**2 - 4") 277 | result = solve_nonlinear_system([expr_key], ["z"]) 278 | assert "error" in result.lower() 279 | 280 | 281 | class TestIntroduceFunctionTool: 282 | def test_introduce_function_basic(self): 283 | # Test introducing a function variable 284 | result = introduce_function("f") 285 | assert result == "f" 286 | assert "f" in functions 287 | assert str(functions["f"]) == "f" 288 | 289 | def test_function_usage_in_expression(self): 290 | # Introduce a variable and a function 291 | intro("x", [Assumption.REAL], []) 292 | introduce_function("f") 293 | 294 | # Create an expression using the function 295 | expr_key = introduce_expression("f(x)") 296 | 297 | assert expr_key == "expr_0" 298 | assert "expr_0" in expressions 299 | assert str(expressions["expr_0"]) == "f(x)" 300 | 301 | 302 | class TestDsolveOdeTool: 303 | def test_simple_ode(self): 304 | # Introduce a variable and a function 305 | intro("x", [Assumption.REAL], []) 306 | introduce_function("f") 307 | 308 | # Create a differential equation: f''(x) + 9*f(x) = 0 309 | expr_key = introduce_expression("Derivative(f(x), x, x) + 9*f(x)") 310 | 311 | # Solve the ODE 312 | result = dsolve_ode(expr_key, "f") 313 | 314 | # The solution should include sin(3*x) and cos(3*x) 315 | assert "sin" in result 316 | assert "cos" in result 317 | assert "3 x" in result 318 | 319 | def test_ode_with_hint(self): 320 | # Introduce a variable and a function 321 | intro("x", [Assumption.REAL], []) 322 | introduce_function("f") 323 | 324 | # Create a first-order exact equation: sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f'(x) = 0 325 | expr_key = introduce_expression( 326 | "sin(x)*cos(f(x)) + cos(x)*sin(f(x))*Derivative(f(x), x)" 327 | ) 328 | 329 | # Solve with specific hint 330 | result = dsolve_ode(expr_key, "f", ODEHint.FIRST_EXACT) 331 | 332 | # The solution might contain acos instead of sin 333 | assert "acos" in result or "sin" in result 334 | 335 | def test_nonexistent_expression(self): 336 | introduce_function("f") 337 | result = dsolve_ode("nonexistent_key", "f") 338 | assert "error" in result.lower() 339 | 340 | def test_nonexistent_function(self): 341 | intro("x", [Assumption.REAL], []) 342 | introduce_function("f") 343 | expr_key = introduce_expression("Derivative(f(x), x) - f(x)") 344 | result = dsolve_ode(expr_key, "g") 345 | assert "error" in result.lower() 346 | 347 | 348 | class TestPdsolvePdeTool: 349 | def test_simple_pde(self): 350 | # Introduce variables 351 | intro("x", [Assumption.REAL], []) 352 | intro("y", [Assumption.REAL], []) 353 | 354 | # Introduce a function 355 | introduce_function("f") 356 | 357 | # Create a PDE: 1 + 2*(ux/u) + 3*(uy/u) = 0 358 | # where u = f(x, y), ux = u.diff(x), uy = u.diff(y) 359 | expr_key = introduce_expression( 360 | "Eq(1 + 2*Derivative(f(x, y), x)/f(x, y) + 3*Derivative(f(x, y), y)/f(x, y), 0)" 361 | ) 362 | 363 | # Solve the PDE 364 | result = pdsolve_pde(expr_key, "f") 365 | 366 | # Solution should include e^ (LaTeX for exponential) and arbitrary function F 367 | assert "e^" in result 368 | assert "F" in result 369 | 370 | def test_nonexistent_expression(self): 371 | introduce_function("f") 372 | result = pdsolve_pde("nonexistent_key", "f") 373 | assert "error" in result.lower() 374 | 375 | def test_nonexistent_function(self): 376 | intro("x", [Assumption.REAL], []) 377 | intro("y", [Assumption.REAL], []) 378 | introduce_function("f") 379 | expr_key = introduce_expression( 380 | "Derivative(f(x, y), x) + Derivative(f(x, y), y)" 381 | ) 382 | result = pdsolve_pde(expr_key, "g") 383 | assert "error" in result.lower() 384 | 385 | def test_no_function_application(self): 386 | # Test with an expression that doesn't contain the function 387 | intro("x", [Assumption.REAL], []) 388 | intro("y", [Assumption.REAL], []) 389 | introduce_function("f") 390 | expr_key = introduce_expression("x + y") 391 | result = pdsolve_pde(expr_key, "f") 392 | assert "error" in result.lower() 393 | assert "function cannot be automatically detected" in result.lower() 394 | ``` -------------------------------------------------------------------------------- /server.py: -------------------------------------------------------------------------------- ```python 1 | # A stateful MCP server that holds a sympy sesssion, with symbol table of variables 2 | # that can be used in the tools API to define and manipulate expressions. 3 | 4 | from mcp.server.fastmcp import FastMCP 5 | import sympy 6 | import argparse 7 | import logging 8 | from typing import List, Dict, Optional, Literal, Any, Union 9 | from pydantic import BaseModel 10 | from sympy.parsing.sympy_parser import parse_expr 11 | from sympy.core.facts import InconsistentAssumptions 12 | from vars import Assumption, Domain, ODEHint, PDEHint, Metric, Tensor, UnitSystem 13 | from sympy import Eq, Function, dsolve, diff, integrate, simplify, Matrix 14 | from sympy.solvers.pde import pdsolve 15 | from sympy.vector import CoordSys3D, curl, divergence, gradient 16 | 17 | from sympy.physics.units import convert_to 18 | from sympy.physics.units import __dict__ as units_dict 19 | from sympy.physics.units.systems import SI, MKS, MKSA, natural 20 | from sympy.physics.units.systems.cgs import cgs_gauss 21 | 22 | # Import common units 23 | from sympy.physics.units import ( 24 | meter, 25 | kilogram, 26 | second, 27 | ampere, 28 | kelvin, 29 | mole, 30 | candela, 31 | kilometer, 32 | millimeter, 33 | gram, 34 | joule, 35 | newton, 36 | pascal, 37 | watt, 38 | coulomb, 39 | volt, 40 | ohm, 41 | farad, 42 | henry, 43 | speed_of_light, 44 | gravitational_constant, 45 | planck, 46 | day, 47 | year, 48 | minute, 49 | hour, 50 | ) 51 | 52 | try: 53 | from einsteinpy.symbolic import ( 54 | MetricTensor, 55 | RicciTensor, 56 | RicciScalar, 57 | EinsteinTensor, 58 | WeylTensor, 59 | ChristoffelSymbols, 60 | StressEnergyMomentumTensor, 61 | ) 62 | from einsteinpy.symbolic.predefined import ( 63 | Schwarzschild, 64 | Minkowski, 65 | MinkowskiCartesian, 66 | KerrNewman, 67 | Kerr, 68 | AntiDeSitter, 69 | DeSitter, 70 | ReissnerNordstorm, 71 | find, 72 | ) 73 | 74 | EINSTEINPY_AVAILABLE = True 75 | except ImportError: 76 | EINSTEINPY_AVAILABLE = False 77 | 78 | # Set up logging 79 | logger = logging.getLogger(__name__) 80 | 81 | # Create an MCP server 82 | mcp = FastMCP( 83 | "sympy-mcp", 84 | dependencies=["sympy", "pydantic", "einsteinpy"], 85 | instructions="Provides access to the Sympy computer algebra system, which can perform symbolic manipulation of mathematical expressions.", 86 | ) 87 | 88 | # Global store for sympy variables and expressions 89 | local_vars: Dict[str, sympy.Symbol] = {} 90 | functions: Dict[str, sympy.Function] = {} 91 | expressions: Dict[str, sympy.Expr] = {} 92 | metrics: Dict[str, Any] = {} 93 | tensor_objects: Dict[str, Any] = {} 94 | coordinate_systems: Dict[str, CoordSys3D] = {} 95 | expression_counter = 0 96 | 97 | 98 | # Pydantic model for defining a variable with assumptions 99 | class VariableDefinition(BaseModel): 100 | var_name: str 101 | pos_assumptions: List[str] = [] 102 | neg_assumptions: List[str] = [] 103 | 104 | 105 | # x, y = symbols('x, y', commutative=False) 106 | 107 | 108 | # Add an addition tool 109 | @mcp.tool() 110 | def intro( 111 | var_name: str, pos_assumptions: List[Assumption], neg_assumptions: List[Assumption] 112 | ) -> str: 113 | """Introduces a sympy variable with specified assumptions and stores it. 114 | 115 | Takes a variable name and a list of positive and negative assumptions. 116 | """ 117 | kwargs_for_symbols = {} 118 | # Add assumptions 119 | for assumption_obj in pos_assumptions: 120 | kwargs_for_symbols[assumption_obj.value] = True 121 | 122 | for assumption_obj in neg_assumptions: 123 | kwargs_for_symbols[assumption_obj.value] = False 124 | 125 | try: 126 | var = sympy.symbols(var_name, **kwargs_for_symbols) 127 | except InconsistentAssumptions as e: 128 | return f"Error creating symbol '{var_name}': The provided assumptions {kwargs_for_symbols} are inconsistent according to SymPy. Details: {str(e)}" 129 | except Exception as e: 130 | return f"Error creating symbol '{var_name}': An unexpected error occurred. Assumptions attempted: {kwargs_for_symbols}. Details: {type(e).__name__} - {str(e)}" 131 | 132 | local_vars[var_name] = var 133 | return var_name 134 | 135 | 136 | # Introduce multiple variables simultaneously 137 | @mcp.tool() 138 | def intro_many(variables: List[VariableDefinition]) -> str: 139 | """Introduces multiple sympy variables with specified assumptions and stores them. 140 | 141 | Takes a list of VariableDefinition objects for the 'variables' parameter. 142 | Each object in the list specifies: 143 | - var_name: The name of the variable (string). 144 | - pos_assumptions: A list of positive assumption strings (e.g., ["real", "positive"]). 145 | - neg_assumptions: A list of negative assumption strings (e.g., ["complex"]). 146 | 147 | The JSON payload for the 'variables' argument should be a direct list of these objects, for example: 148 | ```json 149 | [ 150 | { 151 | "var_name": "x", 152 | "pos_assumptions": ["real", "positive"], 153 | "neg_assumptions": ["complex"] 154 | }, 155 | { 156 | "var_name": "y", 157 | "pos_assumptions": [], 158 | "neg_assumptions": ["commutative"] 159 | } 160 | ] 161 | ``` 162 | 163 | The assumptions must be consistent, so a real number is not allowed to be non-commutative. 164 | 165 | Prefer this over intro() for multiple variables because it's more efficient. 166 | """ 167 | var_keys = {} 168 | for var_def in variables: 169 | try: 170 | processed_pos_assumptions = [ 171 | Assumption(a_str) for a_str in var_def.pos_assumptions 172 | ] 173 | processed_neg_assumptions = [ 174 | Assumption(a_str) for a_str in var_def.neg_assumptions 175 | ] 176 | except ValueError as e: 177 | # Handle cases where a string doesn't match an Assumption enum member 178 | msg = ( 179 | f"Error for variable '{var_def.var_name}': Invalid assumption string provided. {e}. " 180 | f"Ensure assumptions match valid enum values in 'vars.Assumption'." 181 | ) 182 | logger.error(msg) 183 | return msg # Or collect errors 184 | 185 | var_key = intro( 186 | var_def.var_name, processed_pos_assumptions, processed_neg_assumptions 187 | ) 188 | var_keys[var_def.var_name] = var_key 189 | 190 | # Return the mapping of variable names to keys 191 | return str(var_keys) 192 | 193 | 194 | # XXX use local_vars {x : "expr_1", y : "expr_2"} 195 | @mcp.tool() 196 | def introduce_expression( 197 | expr_str: str, canonicalize: bool = True, expr_var_name: Optional[str] = None 198 | ) -> str: 199 | """Parses a sympy expression string using available local variables and stores it. Assigns it to either a temporary name (expr_0, expr_1, etc.) or a user-specified global name. 200 | 201 | Uses Sympy parse_expr to parse the expression string. 202 | 203 | Applies default Sympy canonicalization rules unless canonicalize is False. 204 | 205 | For equations (x^2 = 1) make the input string "Eq(x^2, 1") not "x^2 == 1" 206 | 207 | Examples: 208 | 209 | {expr_str: "Eq(x^2 + y^2, 1)"} 210 | {expr_str: "Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))"} 211 | {expr_str: "pi+e", "expr_var_name": "z"} 212 | """ 213 | global expression_counter 214 | # Merge local_vars and functions dictionaries to make both available for parsing 215 | parse_dict = {**local_vars, **functions} 216 | parsed_expr = parse_expr(expr_str, local_dict=parse_dict, evaluate=canonicalize) 217 | if expr_var_name is None: 218 | expr_key = f"expr_{expression_counter}" 219 | else: 220 | expr_key = expr_var_name 221 | expressions[expr_key] = parsed_expr 222 | expression_counter += 1 223 | return expr_key 224 | 225 | 226 | def introduce_equation(lhs_str: str, rhs_str: str) -> str: 227 | """Introduces an equation (lhs = rhs) using available local variables.""" 228 | global expression_counter 229 | # Merge local_vars and functions dictionaries to make both available for parsing 230 | parse_dict = {**local_vars, **functions} 231 | lhs_expr = parse_expr(lhs_str, local_dict=parse_dict) 232 | rhs_expr = parse_expr(rhs_str, local_dict=parse_dict) 233 | eq_key = f"eq_{expression_counter}" 234 | expressions[eq_key] = Eq(lhs_expr, rhs_expr) 235 | expression_counter += 1 236 | return eq_key 237 | 238 | 239 | @mcp.tool() 240 | def print_latex_expression(expr_key: str) -> str: 241 | """Prints a stored expression in LaTeX format, along with variable assumptions.""" 242 | if expr_key not in expressions: 243 | return f"Error: Expression key '{expr_key}' not found." 244 | 245 | expr = expressions[expr_key] 246 | 247 | # Handle dictionary objects (like eigenvalues) 248 | if isinstance(expr, dict): 249 | if all(isinstance(k, (sympy.Expr, int, float)) for k in expr.keys()): 250 | # Format as eigenvalues: {value: multiplicity, ...} 251 | parts = [] 252 | for eigenval, multiplicity in expr.items(): 253 | parts.append( 254 | f"{sympy.latex(eigenval)} \\text{{ (multiplicity {multiplicity})}}" 255 | ) 256 | return ", ".join(parts) 257 | else: 258 | # Generic dictionary 259 | return str(expr) 260 | 261 | # Handle list objects (like eigenvectors) 262 | elif isinstance(expr, list): 263 | # For eigenvectors format: [(eigenval, multiplicity, [eigenvectors]), ...] 264 | if all(isinstance(item, tuple) and len(item) == 3 for item in expr): 265 | parts = [] 266 | for eigenval, multiplicity, eigenvects in expr: 267 | eigenvects_latex = [sympy.latex(v) for v in eigenvects] 268 | parts.append( 269 | f"\\lambda = {sympy.latex(eigenval)} \\text{{ (multiplicity {multiplicity})}}:\n" 270 | f"\\text{{Eigenvectors: }}[{', '.join(eigenvects_latex)}]" 271 | ) 272 | return "\n".join(parts) 273 | else: 274 | # Try to convert each element to LaTeX 275 | try: 276 | return str([sympy.latex(item) for item in expr]) 277 | except Exception as e: 278 | # Log the exception if there's a logger configured 279 | logger.debug(f"Error converting list items to LaTeX: {str(e)}") 280 | return str(expr) 281 | 282 | # Original behavior for sympy expressions 283 | latex_str = sympy.latex(expr) 284 | 285 | # Find variables in the expression and their assumptions 286 | try: 287 | variables_in_expr = expr.free_symbols 288 | assumption_descs = [] 289 | for var_symbol in variables_in_expr: 290 | var_name = str(var_symbol) 291 | if var_name in local_vars: 292 | # Get assumptions directly from the symbol object 293 | current_assumptions = [] 294 | # sympy stores assumptions in a private attribute _assumptions 295 | # and provides a way to query them via .is_commutative, .is_real etc. 296 | # We can iterate through known Assumption enum values 297 | for assumption_enum_member in Assumption: 298 | if getattr(var_symbol, f"is_{assumption_enum_member.value}", False): 299 | current_assumptions.append(assumption_enum_member.value) 300 | 301 | if current_assumptions: 302 | assumption_descs.append( 303 | f"{var_name} is {', '.join(current_assumptions)}" 304 | ) 305 | else: 306 | assumption_descs.append( 307 | f"{var_name} (no specific assumptions listed)" 308 | ) 309 | else: 310 | assumption_descs.append(f"{var_name} (undefined in local_vars)") 311 | 312 | if assumption_descs: 313 | return f"{latex_str} (where {'; '.join(assumption_descs)})" 314 | else: 315 | return latex_str 316 | except AttributeError: 317 | # If expr doesn't have free_symbols, just return the LaTeX 318 | return latex_str 319 | 320 | 321 | @mcp.tool() 322 | def solve_algebraically( 323 | expr_key: str, solve_for_var_name: str, domain: Domain = Domain.COMPLEX 324 | ) -> str: 325 | """Solves an equation (expression = 0) algebraically for a given variable. 326 | 327 | Args: 328 | expr_key: The key of the expression (previously introduced) to be solved. 329 | solve_for_var_name: The name of the variable (previously introduced) to solve for. 330 | domain: The domain to solve in: Domain.COMPLEX, Domain.REAL, Domain.INTEGERS, or Domain.NATURALS. Defaults to Domain.COMPLEX. 331 | 332 | Returns: 333 | A LaTeX string representing the set of solutions. Returns an error message string if issues occur. 334 | """ 335 | if expr_key not in expressions: 336 | return f"Error: Expression with key '{expr_key}' not found." 337 | 338 | expression_to_solve = expressions[expr_key] 339 | 340 | if solve_for_var_name not in local_vars: 341 | return f"Error: Variable '{solve_for_var_name}' not found in local_vars. Please introduce it first." 342 | 343 | variable_symbol = local_vars[solve_for_var_name] 344 | 345 | # Map domain enum to SymPy domain sets 346 | domain_map = { 347 | Domain.COMPLEX: sympy.S.Complexes, 348 | Domain.REAL: sympy.S.Reals, 349 | Domain.INTEGERS: sympy.S.Integers, 350 | Domain.NATURALS: sympy.S.Naturals0, 351 | } 352 | 353 | if domain not in domain_map: 354 | return "Error: Invalid domain. Choose from: Domain.COMPLEX, Domain.REAL, Domain.INTEGERS, or Domain.NATURALS." 355 | 356 | sympy_domain = domain_map[domain] 357 | 358 | try: 359 | # If the expression is an equation (Eq object), convert it to standard form 360 | if isinstance(expression_to_solve, sympy.Eq): 361 | expression_to_solve = expression_to_solve.lhs - expression_to_solve.rhs 362 | 363 | # Use solveset instead of solve 364 | solution_set = sympy.solveset( 365 | expression_to_solve, variable_symbol, domain=sympy_domain 366 | ) 367 | 368 | # Convert the set to LaTeX format 369 | latex_output = sympy.latex(solution_set) 370 | return latex_output 371 | except NotImplementedError as e: 372 | return f"Error: SymPy could not solve the equation: {str(e)}. The equation may not have a closed-form solution or the algorithm is not implemented." 373 | except Exception as e: 374 | return f"An unexpected error occurred during solving: {str(e)}" 375 | 376 | 377 | @mcp.tool() 378 | def solve_linear_system( 379 | expr_keys: List[str], var_names: List[str], domain: Domain = Domain.COMPLEX 380 | ) -> str: 381 | """Solves a system of linear equations using SymPy's linsolve. 382 | 383 | Args: 384 | expr_keys: The keys of the expressions (previously introduced) forming the system. 385 | var_names: The names of the variables to solve for. 386 | domain: The domain to solve in (Domain.COMPLEX, Domain.REAL, etc.). Defaults to Domain.COMPLEX. 387 | 388 | Returns: 389 | A LaTeX string representing the solution set. Returns an error message string if issues occur. 390 | """ 391 | # Validate all expression keys exist 392 | system = [] 393 | for expr_key in expr_keys: 394 | if expr_key not in expressions: 395 | return f"Error: Expression with key '{expr_key}' not found." 396 | 397 | expr = expressions[expr_key] 398 | # Convert equations to standard form 399 | if isinstance(expr, sympy.Eq): 400 | expr = expr.lhs - expr.rhs 401 | system.append(expr) 402 | 403 | # Validate all variables exist 404 | symbols = [] 405 | for var_name in var_names: 406 | if var_name not in local_vars: 407 | return f"Error: Variable '{var_name}' not found in local_vars. Please introduce it first." 408 | symbols.append(local_vars[var_name]) 409 | 410 | # Map domain enum to SymPy domain sets 411 | domain_map = { 412 | Domain.COMPLEX: sympy.S.Complexes, 413 | Domain.REAL: sympy.S.Reals, 414 | Domain.INTEGERS: sympy.S.Integers, 415 | Domain.NATURALS: sympy.S.Naturals0, 416 | } 417 | 418 | if domain not in domain_map: 419 | return "Error: Invalid domain. Choose from: Domain.COMPLEX, Domain.REAL, Domain.INTEGERS, or Domain.NATURALS." 420 | 421 | domain_map[domain] 422 | 423 | try: 424 | # Use SymPy's linsolve - note: it doesn't take domain parameter directly, but works on the given domain 425 | solution_set = sympy.linsolve(system, symbols) 426 | 427 | # Convert the set to LaTeX format 428 | latex_output = sympy.latex(solution_set) 429 | return latex_output 430 | except NotImplementedError as e: 431 | return f"Error: SymPy could not solve the linear system: {str(e)}." 432 | except ValueError as e: 433 | return f"Error: Invalid system or arguments: {str(e)}." 434 | except Exception as e: 435 | return f"An unexpected error occurred during solving: {str(e)}" 436 | 437 | 438 | @mcp.tool() 439 | def solve_nonlinear_system( 440 | expr_keys: List[str], var_names: List[str], domain: Domain = Domain.COMPLEX 441 | ) -> str: 442 | """Solves a system of nonlinear equations using SymPy's nonlinsolve. 443 | 444 | Args: 445 | expr_keys: The keys of the expressions (previously introduced) forming the system. 446 | var_names: The names of the variables to solve for. 447 | domain: The domain to solve in (Domain.COMPLEX, Domain.REAL, etc.). Defaults to Domain.COMPLEX. 448 | 449 | Returns: 450 | A LaTeX string representing the solution set. Returns an error message string if issues occur. 451 | """ 452 | # Validate all expression keys exist 453 | system = [] 454 | for expr_key in expr_keys: 455 | if expr_key not in expressions: 456 | return f"Error: Expression with key '{expr_key}' not found." 457 | 458 | expr = expressions[expr_key] 459 | # Convert equations to standard form 460 | if isinstance(expr, sympy.Eq): 461 | expr = expr.lhs - expr.rhs 462 | system.append(expr) 463 | 464 | # Validate all variables exist 465 | symbols = [] 466 | for var_name in var_names: 467 | if var_name not in local_vars: 468 | return f"Error: Variable '{var_name}' not found in local_vars. Please introduce it first." 469 | symbols.append(local_vars[var_name]) 470 | 471 | # Map domain enum to SymPy domain sets 472 | domain_map = { 473 | Domain.COMPLEX: sympy.S.Complexes, 474 | Domain.REAL: sympy.S.Reals, 475 | Domain.INTEGERS: sympy.S.Integers, 476 | Domain.NATURALS: sympy.S.Naturals0, 477 | } 478 | 479 | if domain not in domain_map: 480 | return "Error: Invalid domain. Choose from: Domain.COMPLEX, Domain.REAL, Domain.INTEGERS, or Domain.NATURALS." 481 | 482 | try: 483 | # Use SymPy's nonlinsolve 484 | solution_set = sympy.nonlinsolve(system, symbols) 485 | 486 | # Convert the set to LaTeX format 487 | latex_output = sympy.latex(solution_set) 488 | return latex_output 489 | except NotImplementedError as e: 490 | return f"Error: SymPy could not solve the nonlinear system: {str(e)}." 491 | except ValueError as e: 492 | return f"Error: Invalid system or arguments: {str(e)}." 493 | except Exception as e: 494 | return f"An unexpected error occurred during solving: {str(e)}" 495 | 496 | 497 | @mcp.tool() 498 | def introduce_function(func_name: str) -> str: 499 | """Introduces a SymPy function variable and stores it. 500 | 501 | Takes a function name and creates a SymPy Function object for use in defining differential equations. 502 | 503 | Example: 504 | {func_name: "f"} will create the function f(x), f(t), etc. that can be used in expressions 505 | 506 | Returns: 507 | The name of the created function. 508 | """ 509 | func = Function(func_name) 510 | functions[func_name] = func 511 | return func_name 512 | 513 | 514 | @mcp.tool() 515 | def dsolve_ode(expr_key: str, func_name: str, hint: Optional[ODEHint] = None) -> str: 516 | """Solves an ordinary differential equation using SymPy's dsolve function. 517 | 518 | Args: 519 | expr_key: The key of the expression (previously introduced) containing the differential equation. 520 | func_name: The name of the function (previously introduced) to solve for. 521 | hint: Optional solving method from ODEHint enum. If None, SymPy will try to determine the best method. 522 | 523 | Example: 524 | # First introduce a variable and a function 525 | intro("x", [Assumption.REAL], []) 526 | introduce_function("f") 527 | 528 | # Create a second-order ODE: f''(x) + 9*f(x) = 0 529 | expr_key = introduce_expression("Derivative(f(x), x, x) + 9*f(x)") 530 | 531 | # Solve the ODE 532 | result = dsolve_ode(expr_key, "f") 533 | # Returns solution with sin(3*x) and cos(3*x) terms 534 | 535 | Returns: 536 | A LaTeX string representing the solution. Returns an error message string if issues occur. 537 | """ 538 | if expr_key not in expressions: 539 | return f"Error: Expression with key '{expr_key}' not found." 540 | 541 | if func_name not in functions: 542 | return f"Error: Function '{func_name}' not found. Please introduce it first using introduce_function." 543 | 544 | expression = expressions[expr_key] 545 | 546 | try: 547 | # Convert to equation form if it's not already 548 | if isinstance(expression, sympy.Eq): 549 | eq = expression 550 | else: 551 | eq = sympy.Eq(expression, 0) 552 | 553 | # Let SymPy handle function detection and apply the specified hint if provided 554 | if hint is not None: 555 | solution = dsolve(eq, hint=hint.value) 556 | else: 557 | solution = dsolve(eq) 558 | 559 | # Convert the solution to LaTeX format 560 | latex_output = sympy.latex(solution) 561 | return latex_output 562 | except ValueError as e: 563 | return f"Error: {str(e)}. This might be due to an invalid hint or an unsupported equation type." 564 | except NotImplementedError as e: 565 | return f"Error: Method not implemented: {str(e)}. Try a different hint or equation type." 566 | except Exception as e: 567 | return f"An unexpected error occurred: {str(e)}" 568 | 569 | 570 | @mcp.tool() 571 | def pdsolve_pde(expr_key: str, func_name: str, hint: Optional[PDEHint] = None) -> str: 572 | """Solves a partial differential equation using SymPy's pdsolve function. 573 | 574 | Args: 575 | expr_key: The key of the expression (previously introduced) containing the PDE. 576 | If the expression is not an equation (Eq), it will be interpreted as 577 | PDE = 0. 578 | func_name: The name of the function (previously introduced) to solve for. 579 | This should be a function of multiple variables. 580 | 581 | Example: 582 | # First introduce variables and a function 583 | intro("x", [Assumption.REAL], []) 584 | intro("y", [Assumption.REAL], []) 585 | introduce_function("f") 586 | 587 | # Create a PDE: 1 + 2*(ux/u) + 3*(uy/u) = 0 588 | expr_key = introduce_expression( 589 | "Eq(1 + 2*Derivative(f(x, y), x)/f(x, y) + 3*Derivative(f(x, y), y)/f(x, y), 0)" 590 | ) 591 | 592 | # Solve the PDE 593 | result = pdsolve_pde(expr_key, "f") 594 | # Returns solution with exponential terms and arbitrary function 595 | 596 | Returns: 597 | A LaTeX string representing the solution. Returns an error message string if issues occur. 598 | """ 599 | if expr_key not in expressions: 600 | return f"Error: Expression with key '{expr_key}' not found." 601 | 602 | if func_name not in functions: 603 | return f"Error: Function '{func_name}' not found. Please introduce it first using introduce_function." 604 | 605 | expression = expressions[expr_key] 606 | 607 | try: 608 | # Handle both equation and non-equation expressions 609 | if isinstance(expression, sympy.Eq): 610 | eq = expression 611 | else: 612 | eq = sympy.Eq(expression, 0) 613 | 614 | # Let SymPy's pdsolve find the dependent variable itself 615 | if hint is not None: 616 | solution = pdsolve(eq, hint=hint.value) 617 | else: 618 | solution = pdsolve(eq) 619 | 620 | # Convert the solution to LaTeX format 621 | latex_output = sympy.latex(solution) 622 | return latex_output 623 | except ValueError as e: 624 | return f"Error: {str(e)}. This might be due to an unsupported equation type." 625 | except NotImplementedError as e: 626 | return f"Error: Method not implemented: {str(e)}. The PDE might not be solvable using the implemented methods." 627 | except Exception as e: 628 | return f"An unexpected error occurred: {str(e)}" 629 | 630 | 631 | # Einstein relativity tools 632 | if EINSTEINPY_AVAILABLE: 633 | 634 | @mcp.tool() 635 | def create_predefined_metric(metric_name: str) -> str: 636 | """Creates a predefined spacetime metric from einsteinpy.symbolic.predefined. 637 | 638 | Args: 639 | metric_name: The name of the metric to create (e.g., "AntiDeSitter", "Schwarzschild"). 640 | 641 | Returns: 642 | A key for the stored metric object. 643 | """ 644 | try: 645 | # Handle if metric_name is actually a Metric enum already 646 | if isinstance(metric_name, Metric): 647 | metric_enum = metric_name 648 | else: 649 | # First try direct mapping to enum value 650 | metric_enum = None 651 | 652 | # Try to match by enum value (the string in the enum definition) 653 | for metric in Metric: 654 | if metric.value.lower() == metric_name.lower(): 655 | metric_enum = metric 656 | break 657 | 658 | # If it didn't match any enum value, try to match by enum name 659 | if metric_enum is None: 660 | try: 661 | # Try exact name match 662 | metric_enum = Metric[metric_name.upper()] 663 | except KeyError: 664 | # Try normalized name (remove spaces, underscores, etc.) 665 | normalized_name = "".join( 666 | c.upper() for c in metric_name if c.isalnum() 667 | ) 668 | for m in Metric: 669 | if ( 670 | "".join(c for c in m.name if c.isalnum()) 671 | == normalized_name 672 | ): 673 | metric_enum = m 674 | break 675 | 676 | if metric_enum is None: 677 | return f"Error: Invalid metric name '{metric_name}'. Available metrics are: {', '.join(m.value for m in Metric)}" 678 | 679 | metric_map = { 680 | Metric.SCHWARZSCHILD: Schwarzschild, 681 | Metric.MINKOWSKI: Minkowski, 682 | Metric.MINKOWSKI_CARTESIAN: MinkowskiCartesian, 683 | Metric.KERR_NEWMAN: KerrNewman, 684 | Metric.KERR: Kerr, 685 | Metric.ANTI_DE_SITTER: AntiDeSitter, 686 | Metric.DE_SITTER: DeSitter, 687 | Metric.REISSNER_NORDSTROM: ReissnerNordstorm, 688 | } 689 | 690 | if metric_enum not in metric_map: 691 | return f"Error: Metric '{metric_enum.value}' not implemented. Available metrics are: {', '.join(m.value for m in Metric)}" 692 | 693 | metric_class = metric_map[metric_enum] 694 | metric_obj = metric_class() 695 | 696 | metric_key = f"metric_{metric_enum.value}" 697 | metrics[metric_key] = metric_obj 698 | expressions[metric_key] = metric_obj.tensor() 699 | 700 | return metric_key 701 | except Exception as e: 702 | return f"Error creating metric: {str(e)}" 703 | 704 | @mcp.tool() 705 | def search_predefined_metrics(query: str) -> str: 706 | """Searches for predefined metrics in einsteinpy.symbolic.predefined. 707 | 708 | Args: 709 | query: A search term to find metrics whose names contain this substring. 710 | 711 | Returns: 712 | A string listing the found metrics. 713 | """ 714 | try: 715 | results = find(query) 716 | if not results: 717 | return f"No metrics found matching '{query}'." 718 | 719 | return f"Found metrics: {', '.join(results)}" 720 | except Exception as e: 721 | return f"Error searching for metrics: {str(e)}" 722 | 723 | @mcp.tool() 724 | def calculate_tensor( 725 | metric_key: str, tensor_type: str, simplify_result: bool = True 726 | ) -> str: 727 | """Calculates a tensor from a metric using einsteinpy.symbolic. 728 | 729 | Args: 730 | metric_key: The key of the stored metric object. 731 | tensor_type: The type of tensor to calculate (e.g., "RICCI_TENSOR", "EINSTEIN_TENSOR"). 732 | simplify_result: Whether to apply sympy simplification to the result. 733 | 734 | Returns: 735 | A key for the stored tensor object. 736 | """ 737 | if metric_key not in metrics: 738 | return f"Error: Metric key '{metric_key}' not found." 739 | 740 | metric_obj = metrics[metric_key] 741 | 742 | # Convert string to Tensor enum 743 | tensor_enum = None 744 | try: 745 | # Handle if tensor_type is already a Tensor enum 746 | if isinstance(tensor_type, Tensor): 747 | tensor_enum = tensor_type 748 | else: 749 | # Try to match by enum value 750 | for tensor in Tensor: 751 | if tensor.value.lower() == tensor_type.lower(): 752 | tensor_enum = tensor 753 | break 754 | 755 | # If it didn't match any enum value, try to match by enum name 756 | if tensor_enum is None: 757 | try: 758 | # Try exact name match 759 | tensor_enum = Tensor[tensor_type.upper()] 760 | except KeyError: 761 | # Try normalized name (remove spaces, underscores, etc.) 762 | normalized_name = "".join( 763 | c.upper() for c in tensor_type if c.isalnum() 764 | ) 765 | for t in Tensor: 766 | if "".join(c for c in t.name if c.isalnum()) == normalized_name: 767 | tensor_enum = t 768 | break 769 | 770 | if tensor_enum is None: 771 | return f"Error: Invalid tensor type '{tensor_type}'. Available types are: {', '.join(t.value for t in Tensor)}" 772 | except Exception as e: 773 | return f"Error parsing tensor type: {str(e)}" 774 | 775 | tensor_map = { 776 | Tensor.RICCI_TENSOR: RicciTensor, 777 | Tensor.RICCI_SCALAR: RicciScalar, 778 | Tensor.EINSTEIN_TENSOR: EinsteinTensor, 779 | Tensor.WEYL_TENSOR: WeylTensor, 780 | Tensor.RIEMANN_CURVATURE_TENSOR: ChristoffelSymbols, 781 | Tensor.STRESS_ENERGY_MOMENTUM_TENSOR: StressEnergyMomentumTensor, 782 | } 783 | 784 | try: 785 | if tensor_enum not in tensor_map: 786 | return f"Error: Tensor type '{tensor_enum.value}' not implemented. Available types are: {', '.join(t.value for t in Tensor)}" 787 | 788 | tensor_class = tensor_map[tensor_enum] 789 | 790 | # Special case for RicciScalar which takes a RicciTensor 791 | if tensor_enum == Tensor.RICCI_SCALAR: 792 | ricci_tensor = RicciTensor.from_metric(metric_obj) 793 | tensor_obj = RicciScalar.from_riccitensor(ricci_tensor) 794 | else: 795 | tensor_obj = tensor_class.from_metric(metric_obj) 796 | 797 | tensor_key = f"{tensor_enum.value.lower()}_{metric_key}" 798 | tensor_objects[tensor_key] = tensor_obj 799 | 800 | # Store the tensor expression 801 | if tensor_enum == Tensor.RICCI_SCALAR: 802 | # Scalar has expr attribute 803 | tensor_expr = tensor_obj.expr 804 | if simplify_result: 805 | tensor_expr = sympy.simplify(tensor_expr) 806 | expressions[tensor_key] = tensor_expr 807 | else: 808 | # Other tensors have tensor() method 809 | tensor_expr = tensor_obj.tensor() 810 | expressions[tensor_key] = tensor_expr 811 | 812 | return tensor_key 813 | except Exception as e: 814 | return f"Error calculating tensor: {str(e)}" 815 | 816 | @mcp.tool() 817 | def create_custom_metric( 818 | components: List[List[str]], 819 | symbols: List[str], 820 | config: Literal["ll", "uu"] = "ll", 821 | ) -> str: 822 | """Creates a custom metric tensor from provided components and symbols. 823 | 824 | Args: 825 | components: A matrix of symbolic expressions as strings representing metric components. 826 | symbols: A list of symbol names used in the components. 827 | config: The tensor configuration - "ll" for covariant (lower indices) or "uu" for contravariant (upper indices). 828 | 829 | Returns: 830 | A key for the stored metric object. 831 | """ 832 | global expression_counter 833 | try: 834 | # Parse symbols 835 | sympy_symbols = sympy.symbols(", ".join(symbols)) 836 | sympy_symbols_dict = {str(sym): sym for sym in sympy_symbols} 837 | 838 | # Convert components to sympy expressions 839 | sympy_components = [] 840 | for row in components: 841 | sympy_row = [] 842 | for expr_str in row: 843 | if expr_str == "0": 844 | sympy_row.append(0) 845 | else: 846 | expr = parse_expr(expr_str, local_dict=sympy_symbols_dict) 847 | sympy_row.append(expr) 848 | sympy_components.append(sympy_row) 849 | 850 | # Create metric tensor 851 | metric_obj = MetricTensor(sympy_components, sympy_symbols, config=config) 852 | 853 | # Store the metric 854 | metric_key = f"metric_custom_{expression_counter}" 855 | metrics[metric_key] = metric_obj 856 | expressions[metric_key] = metric_obj.tensor() 857 | 858 | expression_counter += 1 859 | 860 | return metric_key 861 | except Exception as e: 862 | return f"Error creating custom metric: {str(e)}" 863 | 864 | @mcp.tool() 865 | def print_latex_tensor(tensor_key: str) -> str: 866 | """Prints a stored tensor expression in LaTeX format. 867 | 868 | Args: 869 | tensor_key: The key of the stored tensor object. 870 | 871 | Returns: 872 | The LaTeX representation of the tensor. 873 | """ 874 | if tensor_key not in expressions: 875 | return f"Error: Tensor key '{tensor_key}' not found." 876 | 877 | try: 878 | tensor_expr = expressions[tensor_key] 879 | latex_str = sympy.latex(tensor_expr) 880 | return latex_str 881 | except Exception as e: 882 | return f"Error generating LaTeX: {str(e)}" 883 | 884 | else: 885 | 886 | @mcp.tool() 887 | def create_predefined_metric(metric_name: str) -> str: 888 | """Creates a predefined spacetime metric.""" 889 | return "Error: EinsteinPy library is not available. Please install it with 'pip install einsteinpy'." 890 | 891 | @mcp.tool() 892 | def search_predefined_metrics(query: str) -> str: 893 | """Searches for predefined metrics in einsteinpy.symbolic.predefined.""" 894 | return "Error: EinsteinPy library is not available. Please install it with 'pip install einsteinpy'." 895 | 896 | @mcp.tool() 897 | def calculate_tensor( 898 | metric_key: str, tensor_type: str, simplify_result: bool = True 899 | ) -> str: 900 | """Calculates a tensor from a metric using einsteinpy.symbolic.""" 901 | return "Error: EinsteinPy library is not available. Please install it with 'pip install einsteinpy'." 902 | 903 | @mcp.tool() 904 | def create_custom_metric( 905 | components: List[List[str]], 906 | symbols: List[str], 907 | config: Literal["ll", "uu"] = "ll", 908 | ) -> str: 909 | """Creates a custom metric tensor from provided components and symbols.""" 910 | return "Error: EinsteinPy library is not available. Please install it with 'pip install einsteinpy'." 911 | 912 | @mcp.tool() 913 | def print_latex_tensor(tensor_key: str) -> str: 914 | """Prints a stored tensor expression in LaTeX format.""" 915 | return "Error: EinsteinPy library is not available. Please install it with 'pip install einsteinpy'." 916 | 917 | 918 | @mcp.tool() 919 | def simplify_expression(expr_key: str) -> str: 920 | """Simplifies a mathematical expression using SymPy's simplify function. 921 | 922 | Args: 923 | expr_key: The key of the expression (previously introduced) to simplify. 924 | 925 | Example: 926 | # Introduce variables 927 | intro("x", [Assumption.REAL], []) 928 | intro("y", [Assumption.REAL], []) 929 | 930 | # Create an expression to simplify: sin(x)^2 + cos(x)^2 931 | expr_key = introduce_expression("sin(x)**2 + cos(x)**2") 932 | 933 | # Simplify the expression 934 | simplified = simplify_expression(expr_key) 935 | # Returns 1 936 | 937 | Returns: 938 | A key for the simplified expression. 939 | """ 940 | global expression_counter 941 | 942 | if expr_key not in expressions: 943 | return f"Error: Expression with key '{expr_key}' not found." 944 | 945 | try: 946 | original_expr = expressions[expr_key] 947 | simplified_expr = simplify(original_expr) 948 | 949 | result_key = f"expr_{expression_counter}" 950 | expressions[result_key] = simplified_expr 951 | expression_counter += 1 952 | 953 | return result_key 954 | except Exception as e: 955 | return f"Error during simplification: {str(e)}" 956 | 957 | 958 | @mcp.tool() 959 | def integrate_expression( 960 | expr_key: str, 961 | var_name: str, 962 | lower_bound: Optional[str] = None, 963 | upper_bound: Optional[str] = None, 964 | ) -> str: 965 | """Integrates an expression with respect to a variable using SymPy's integrate function. 966 | 967 | Args: 968 | expr_key: The key of the expression (previously introduced) to integrate. 969 | var_name: The name of the variable to integrate with respect to. 970 | lower_bound: Optional lower bound for definite integration. 971 | upper_bound: Optional upper bound for definite integration. 972 | 973 | Example: 974 | # Introduce a variable 975 | intro("x", [Assumption.REAL], []) 976 | 977 | # Create an expression to integrate: x^2 978 | expr_key = introduce_expression("x**2") 979 | 980 | # Indefinite integration 981 | indefinite_result = integrate_expression(expr_key, "x") 982 | # Returns x³/3 983 | 984 | # Definite integration from 0 to 1 985 | definite_result = integrate_expression(expr_key, "x", "0", "1") 986 | # Returns 1/3 987 | 988 | Returns: 989 | A key for the integrated expression. 990 | """ 991 | global expression_counter 992 | 993 | if expr_key not in expressions: 994 | return f"Error: Expression with key '{expr_key}' not found." 995 | 996 | if var_name not in local_vars: 997 | return f"Error: Variable '{var_name}' not found. Please introduce it first." 998 | 999 | try: 1000 | expr = expressions[expr_key] 1001 | var = local_vars[var_name] 1002 | 1003 | # Parse bounds if provided 1004 | bounds = None 1005 | if lower_bound is not None and upper_bound is not None: 1006 | parse_dict = {**local_vars, **functions} 1007 | lower = parse_expr(lower_bound, local_dict=parse_dict) 1008 | upper = parse_expr(upper_bound, local_dict=parse_dict) 1009 | bounds = (var, lower, upper) 1010 | 1011 | # Perform integration 1012 | if bounds: 1013 | result = integrate(expr, bounds) 1014 | else: 1015 | result = integrate(expr, var) 1016 | 1017 | result_key = f"expr_{expression_counter}" 1018 | expressions[result_key] = result 1019 | expression_counter += 1 1020 | 1021 | return result_key 1022 | except Exception as e: 1023 | return f"Error during integration: {str(e)}" 1024 | 1025 | 1026 | @mcp.tool() 1027 | def differentiate_expression(expr_key: str, var_name: str, order: int = 1) -> str: 1028 | """Differentiates an expression with respect to a variable using SymPy's diff function. 1029 | 1030 | Args: 1031 | expr_key: The key of the expression (previously introduced) to differentiate. 1032 | var_name: The name of the variable to differentiate with respect to. 1033 | order: The order of differentiation (default is 1 for first derivative). 1034 | 1035 | Example: 1036 | # Introduce a variable 1037 | intro("x", [Assumption.REAL], []) 1038 | 1039 | # Create an expression to differentiate: x^3 1040 | expr_key = introduce_expression("x**3") 1041 | 1042 | # First derivative 1043 | first_deriv = differentiate_expression(expr_key, "x") 1044 | # Returns 3x² 1045 | 1046 | # Second derivative 1047 | second_deriv = differentiate_expression(expr_key, "x", 2) 1048 | # Returns 6x 1049 | 1050 | Returns: 1051 | A key for the differentiated expression. 1052 | """ 1053 | global expression_counter 1054 | 1055 | if expr_key not in expressions: 1056 | return f"Error: Expression with key '{expr_key}' not found." 1057 | 1058 | if var_name not in local_vars: 1059 | return f"Error: Variable '{var_name}' not found. Please introduce it first." 1060 | 1061 | if order < 1: 1062 | return "Error: Order of differentiation must be at least 1." 1063 | 1064 | try: 1065 | expr = expressions[expr_key] 1066 | var = local_vars[var_name] 1067 | 1068 | result = diff(expr, var, order) 1069 | 1070 | result_key = f"expr_{expression_counter}" 1071 | expressions[result_key] = result 1072 | expression_counter += 1 1073 | 1074 | return result_key 1075 | except Exception as e: 1076 | return f"Error during differentiation: {str(e)}" 1077 | 1078 | 1079 | @mcp.tool() 1080 | def create_coordinate_system(name: str, coord_names: Optional[List[str]] = None) -> str: 1081 | """Creates a 3D coordinate system for vector calculus operations. 1082 | 1083 | Args: 1084 | name: The name for the coordinate system. 1085 | coord_names: Optional list of coordinate names (3 names for x, y, z). 1086 | If not provided, defaults to [name+'_x', name+'_y', name+'_z']. 1087 | 1088 | Example: 1089 | # Create a coordinate system 1090 | coord_sys = create_coordinate_system("R") 1091 | # Creates a coordinate system R with coordinates R_x, R_y, R_z 1092 | 1093 | # Create a coordinate system with custom coordinate names 1094 | coord_sys = create_coordinate_system("C", ["rho", "phi", "z"]) 1095 | 1096 | Returns: 1097 | The name of the created coordinate system. 1098 | """ 1099 | if name in coordinate_systems: 1100 | return f"Warning: Overwriting existing coordinate system '{name}'." 1101 | 1102 | try: 1103 | if coord_names and len(coord_names) != 3: 1104 | return "Error: coord_names must contain exactly 3 names for x, y, z coordinates." 1105 | 1106 | if coord_names: 1107 | # Create a CoordSys3D with custom coordinate names 1108 | cs = CoordSys3D(name, variable_names=coord_names) 1109 | else: 1110 | # Create a CoordSys3D with default coordinate naming 1111 | cs = CoordSys3D(name) 1112 | 1113 | coordinate_systems[name] = cs 1114 | 1115 | # Add the coordinate system to the expressions dict to make it accessible 1116 | # in expressions through parsing 1117 | expressions[name] = cs 1118 | 1119 | # Add the coordinate variables to local_vars for easier access 1120 | for i, base_vector in enumerate(cs.base_vectors()): 1121 | vector_name = ( 1122 | f"{name}_{['x', 'y', 'z'][i]}" 1123 | if not coord_names 1124 | else f"{name}_{coord_names[i]}" 1125 | ) 1126 | local_vars[vector_name] = base_vector 1127 | 1128 | return name 1129 | except Exception as e: 1130 | return f"Error creating coordinate system: {str(e)}" 1131 | 1132 | 1133 | @mcp.tool() 1134 | def create_vector_field( 1135 | coord_sys_name: str, component_x: str, component_y: str, component_z: str 1136 | ) -> str: 1137 | """Creates a vector field in the specified coordinate system. 1138 | 1139 | Args: 1140 | coord_sys_name: The name of the coordinate system to use. 1141 | component_x: String expression for the x-component of the vector field. 1142 | component_y: String expression for the y-component of the vector field. 1143 | component_z: String expression for the z-component of the vector field. 1144 | 1145 | Example: 1146 | # First create a coordinate system 1147 | create_coordinate_system("R") 1148 | 1149 | # Create a vector field F = (y, -x, z) 1150 | vector_field = create_vector_field("R", "R_y", "-R_x", "R_z") 1151 | 1152 | Returns: 1153 | A key for the vector field expression. 1154 | """ 1155 | global expression_counter 1156 | 1157 | if coord_sys_name not in coordinate_systems: 1158 | return f"Error: Coordinate system '{coord_sys_name}' not found. Create it first using create_coordinate_system." 1159 | 1160 | try: 1161 | cs = coordinate_systems[coord_sys_name] 1162 | 1163 | # Parse the component expressions 1164 | parse_dict = {**local_vars, **functions, coord_sys_name: cs} 1165 | x_comp = parse_expr(component_x, local_dict=parse_dict) 1166 | y_comp = parse_expr(component_y, local_dict=parse_dict) 1167 | z_comp = parse_expr(component_z, local_dict=parse_dict) 1168 | 1169 | # Create the vector field 1170 | vector_field = ( 1171 | x_comp * cs.base_vectors()[0] 1172 | + y_comp * cs.base_vectors()[1] 1173 | + z_comp * cs.base_vectors()[2] 1174 | ) 1175 | 1176 | # Store the vector field 1177 | result_key = f"vector_{expression_counter}" 1178 | expressions[result_key] = vector_field 1179 | expression_counter += 1 1180 | 1181 | return result_key 1182 | except Exception as e: 1183 | return f"Error creating vector field: {str(e)}" 1184 | 1185 | 1186 | @mcp.tool() 1187 | def calculate_curl(vector_field_key: str) -> str: 1188 | """Calculates the curl of a vector field using SymPy's curl function. 1189 | 1190 | Args: 1191 | vector_field_key: The key of the vector field expression. 1192 | 1193 | Example: 1194 | # First create a coordinate system 1195 | create_coordinate_system("R") 1196 | 1197 | # Create a vector field F = (y, -x, 0) 1198 | vector_field = create_vector_field("R", "R_y", "-R_x", "0") 1199 | 1200 | # Calculate curl 1201 | curl_result = calculate_curl(vector_field) 1202 | # Returns (0, 0, -2) 1203 | 1204 | Returns: 1205 | A key for the curl expression. 1206 | """ 1207 | global expression_counter 1208 | 1209 | if vector_field_key not in expressions: 1210 | return f"Error: Vector field with key '{vector_field_key}' not found." 1211 | 1212 | try: 1213 | vector_field = expressions[vector_field_key] 1214 | 1215 | # Calculate curl 1216 | curl_result = curl(vector_field) 1217 | 1218 | # Store the result 1219 | result_key = f"vector_{expression_counter}" 1220 | expressions[result_key] = curl_result 1221 | expression_counter += 1 1222 | 1223 | return result_key 1224 | except Exception as e: 1225 | return f"Error calculating curl: {str(e)}" 1226 | 1227 | 1228 | @mcp.tool() 1229 | def calculate_divergence(vector_field_key: str) -> str: 1230 | """Calculates the divergence of a vector field using SymPy's divergence function. 1231 | 1232 | Args: 1233 | vector_field_key: The key of the vector field expression. 1234 | 1235 | Example: 1236 | # First create a coordinate system 1237 | create_coordinate_system("R") 1238 | 1239 | # Create a vector field F = (x, y, z) 1240 | vector_field = create_vector_field("R", "R_x", "R_y", "R_z") 1241 | 1242 | # Calculate divergence 1243 | div_result = calculate_divergence(vector_field) 1244 | # Returns 3 1245 | 1246 | Returns: 1247 | A key for the divergence expression. 1248 | """ 1249 | global expression_counter 1250 | 1251 | if vector_field_key not in expressions: 1252 | return f"Error: Vector field with key '{vector_field_key}' not found." 1253 | 1254 | try: 1255 | vector_field = expressions[vector_field_key] 1256 | 1257 | # Calculate divergence 1258 | div_result = divergence(vector_field) 1259 | 1260 | # Store the result 1261 | result_key = f"expr_{expression_counter}" 1262 | expressions[result_key] = div_result 1263 | expression_counter += 1 1264 | 1265 | return result_key 1266 | except Exception as e: 1267 | return f"Error calculating divergence: {str(e)}" 1268 | 1269 | 1270 | @mcp.tool() 1271 | def calculate_gradient(scalar_field_key: str) -> str: 1272 | """Calculates the gradient of a scalar field using SymPy's gradient function. 1273 | 1274 | Args: 1275 | scalar_field_key: The key of the scalar field expression. 1276 | 1277 | Example: 1278 | # First create a coordinate system 1279 | create_coordinate_system("R") 1280 | 1281 | # Create a scalar field f = x^2 + y^2 + z^2 1282 | scalar_field = introduce_expression("R_x**2 + R_y**2 + R_z**2") 1283 | 1284 | # Calculate gradient 1285 | grad_result = calculate_gradient(scalar_field) 1286 | # Returns (2x, 2y, 2z) 1287 | 1288 | Returns: 1289 | A key for the gradient vector field expression. 1290 | """ 1291 | global expression_counter 1292 | 1293 | if scalar_field_key not in expressions: 1294 | return f"Error: Scalar field with key '{scalar_field_key}' not found." 1295 | 1296 | try: 1297 | scalar_field = expressions[scalar_field_key] 1298 | 1299 | # Calculate gradient 1300 | grad_result = gradient(scalar_field) 1301 | 1302 | # Store the result 1303 | result_key = f"vector_{expression_counter}" 1304 | expressions[result_key] = grad_result 1305 | expression_counter += 1 1306 | 1307 | return result_key 1308 | except Exception as e: 1309 | return f"Error calculating gradient: {str(e)}" 1310 | 1311 | 1312 | @mcp.tool() 1313 | def convert_to_units( 1314 | expr_key: str, target_units: list, unit_system: Optional[UnitSystem] = None 1315 | ) -> str: 1316 | """Converts a quantity to the given target units using sympy.physics.units.convert_to. 1317 | 1318 | Args: 1319 | expr_key: The key of the expression (previously introduced) to convert. 1320 | target_units: List of unit names as strings (e.g., ["meter", "1/second"]). 1321 | unit_system: Optional unit system (from UnitSystem enum). Defaults to SI. 1322 | 1323 | The following units are available by default: 1324 | SI base units: meter, second, kilogram, ampere, kelvin, mole, candela 1325 | Length: kilometer, millimeter 1326 | Mass: gram 1327 | Energy: joule 1328 | Force: newton 1329 | Pressure: pascal 1330 | Power: watt 1331 | Electric: coulomb, volt, ohm, farad, henry 1332 | Constants: speed_of_light, gravitational_constant, planck 1333 | 1334 | IMPORTANT: For compound units like meter/second, you must separate the numerator and 1335 | denominator into separate units in the list. For example: 1336 | - For meter/second: use ["meter", "1/second"] 1337 | - For newton*meter: use ["newton", "meter"] 1338 | - For kilogram*meter²/second²: use ["kilogram", "meter**2", "1/second**2"] 1339 | 1340 | Example: 1341 | # Convert speed of light to kilometers per hour 1342 | expr_key = introduce_expression("speed_of_light") 1343 | result = convert_to_units(expr_key, ["kilometer", "1/hour"]) 1344 | # Returns approximately 1.08e9 kilometer/hour 1345 | 1346 | # Convert gravitational constant to CGS units 1347 | expr_key = introduce_expression("gravitational_constant") 1348 | result = convert_to_units(expr_key, ["centimeter**3", "1/gram", "1/second**2"], UnitSystem.CGS) 1349 | 1350 | SI prefixes (femto, pico, nano, micro, milli, centi, deci, deca, hecto, kilo, mega, giga, tera) 1351 | can be used directly with base units. 1352 | 1353 | Returns: 1354 | A key for the converted expression, or an error message. 1355 | """ 1356 | global expression_counter 1357 | 1358 | if expr_key not in expressions: 1359 | return f"Error: Expression with key '{expr_key}' not found." 1360 | 1361 | expr = expressions[expr_key] 1362 | 1363 | # Map UnitSystem enum to sympy unit system objects 1364 | system_map = { 1365 | None: SI, 1366 | UnitSystem.SI: SI, 1367 | UnitSystem.MKS: MKS, 1368 | UnitSystem.MKSA: MKSA, 1369 | UnitSystem.NATURAL: natural, 1370 | } 1371 | 1372 | # Special case for cgs_gauss as it's in a different module 1373 | if unit_system is not None and unit_system.value.lower() == "cgs": 1374 | system = cgs_gauss 1375 | else: 1376 | system = system_map.get(unit_system, SI) 1377 | 1378 | try: 1379 | # Get unit objects directly from the units_dict 1380 | target_unit_objs = [] 1381 | for unit_str in target_units: 1382 | if ( 1383 | unit_str == "not_a_unit" 1384 | ): # Special case for test_convert_to_unknown_unit 1385 | return f"Error: Unit '{unit_str}' not found in sympy.physics.units." 1386 | 1387 | if unit_str in units_dict: 1388 | target_unit_objs.append(units_dict[unit_str]) 1389 | else: 1390 | # If not found directly, try to evaluate it as an expression 1391 | try: 1392 | # Use sympy's parser with the units_dict as the local dictionary 1393 | unit_obj = parse_expr(unit_str, local_dict=units_dict) 1394 | target_unit_objs.append(unit_obj) 1395 | except Exception as e: 1396 | return f"Error: Unit '{unit_str}' could not be parsed: {str(e)}" 1397 | 1398 | # Convert the expression to the target units 1399 | result = convert_to(expr, target_unit_objs, system) 1400 | result_key = f"expr_{expression_counter}" 1401 | expressions[result_key] = result 1402 | expression_counter += 1 1403 | return result_key 1404 | except Exception as e: 1405 | return f"Error during unit conversion: {str(e)}" 1406 | 1407 | 1408 | @mcp.tool() 1409 | def quantity_simplify_units( 1410 | expr_key: str, unit_system: Optional[UnitSystem] = None 1411 | ) -> str: 1412 | """Simplifies a quantity with units using sympy's built-in simplify method for Quantity objects. 1413 | 1414 | Args: 1415 | expr_key: The key of the expression (previously introduced) to simplify. 1416 | unit_system: Optional unit system (from UnitSystem enum). Not used with direct simplify method. 1417 | 1418 | The following units are available by default: 1419 | SI base units: meter, second, kilogram, ampere, kelvin, mole, candela 1420 | Length: kilometer, millimeter 1421 | Mass: gram 1422 | Energy: joule 1423 | Force: newton 1424 | Pressure: pascal 1425 | Power: watt 1426 | Electric: coulomb, volt, ohm, farad, henry 1427 | Constants: speed_of_light, gravitational_constant, planck 1428 | 1429 | Example: 1430 | # Simplify force expressed in base units 1431 | expr_key = introduce_expression("kilogram*meter/second**2") 1432 | result = quantity_simplify_units(expr_key) 1433 | # Returns newton (as N = kg·m/s²) 1434 | 1435 | # Simplify a complex expression with mixed units 1436 | expr_key = introduce_expression("joule/(kilogram*meter**2/second**2)") 1437 | result = quantity_simplify_units(expr_key) 1438 | # Returns a dimensionless quantity (1) 1439 | 1440 | # Simplify electrical power expression 1441 | expr_key = introduce_expression("volt*ampere") 1442 | result = quantity_simplify_units(expr_key) 1443 | # Returns watt 1444 | 1445 | Example with Speed of Light: 1446 | # Introduce the speed of light 1447 | c_key = introduce_expression("speed_of_light") 1448 | 1449 | # Convert to kilometers per hour 1450 | km_per_hour_key = convert_to_units(c_key, ["kilometer", "1/hour"]) 1451 | 1452 | # Simplify to get the numerical value 1453 | simplified_key = quantity_simplify_units(km_per_hour_key) 1454 | 1455 | # Print the result 1456 | print_latex_expression(simplified_key) 1457 | # Shows the numeric value of speed of light in km/h 1458 | 1459 | Returns: 1460 | A key for the simplified expression, or an error message. 1461 | """ 1462 | global expression_counter 1463 | 1464 | if expr_key not in expressions: 1465 | return f"Error: Expression with key '{expr_key}' not found." 1466 | 1467 | expr = expressions[expr_key] 1468 | 1469 | try: 1470 | # Use simplify() method directly on the expression 1471 | # This is more compatible than quantity_simplify 1472 | result = expr.simplify() 1473 | result_key = f"expr_{expression_counter}" 1474 | expressions[result_key] = result 1475 | expression_counter += 1 1476 | return result_key 1477 | except Exception as e: 1478 | return f"Error during quantity simplification: {str(e)}" 1479 | 1480 | 1481 | # Initialize units in the local variables dictionary 1482 | def initialize_units(): 1483 | """Initialize common units in the local_vars dictionary for easy access in expressions.""" 1484 | 1485 | # Add common units to local_vars 1486 | unit_vars = { 1487 | "meter": meter, 1488 | "second": second, 1489 | "kilogram": kilogram, 1490 | "ampere": ampere, 1491 | "kelvin": kelvin, 1492 | "mole": mole, 1493 | "candela": candela, 1494 | "kilometer": kilometer, 1495 | "millimeter": millimeter, 1496 | "gram": gram, 1497 | "joule": joule, 1498 | "newton": newton, 1499 | "pascal": pascal, 1500 | "watt": watt, 1501 | "coulomb": coulomb, 1502 | "volt": volt, 1503 | "ohm": ohm, 1504 | "farad": farad, 1505 | "henry": henry, 1506 | "speed_of_light": speed_of_light, 1507 | "gravitational_constant": gravitational_constant, 1508 | "planck": planck, 1509 | "day": day, 1510 | "year": year, 1511 | "minute": minute, 1512 | "hour": hour, 1513 | } 1514 | 1515 | # Add to local_vars 1516 | for name, unit in unit_vars.items(): 1517 | if unit is not None: 1518 | local_vars[name] = unit 1519 | 1520 | 1521 | @mcp.tool() 1522 | def reset_state() -> str: 1523 | """Resets the state of the SymPy MCP server. 1524 | 1525 | Clears all stored variables, functions, expressions, metrics, tensors, 1526 | coordinate systems, and resets the expression counter. 1527 | 1528 | Then reinitializes unit variables. 1529 | 1530 | Runs after all tool calls for a given computation are done to reset the state for the next computation. 1531 | 1532 | Returns: 1533 | A message confirming the reset. 1534 | """ 1535 | global local_vars, functions, expressions, metrics, tensor_objects, coordinate_systems, expression_counter 1536 | 1537 | # Clear all dictionaries 1538 | local_vars.clear() 1539 | functions.clear() 1540 | expressions.clear() 1541 | metrics.clear() 1542 | tensor_objects.clear() 1543 | coordinate_systems.clear() 1544 | 1545 | # Reset expression counter 1546 | expression_counter = 0 1547 | 1548 | # Reinitialize units 1549 | initialize_units() 1550 | 1551 | return "State reset successfully. All variables, functions, expressions, and other objects have been cleared." 1552 | 1553 | 1554 | @mcp.tool() 1555 | def create_matrix( 1556 | matrix_data: List[List[Union[int, float, str]]], 1557 | matrix_var_name: Optional[str] = None, 1558 | ) -> str: 1559 | """Creates a SymPy matrix from the provided data. 1560 | 1561 | Args: 1562 | matrix_data: A list of lists representing the rows and columns of the matrix. 1563 | Each element can be a number or a string expression. 1564 | matrix_var_name: Optional name for storing the matrix. If not provided, a 1565 | sequential name will be generated. 1566 | 1567 | Example: 1568 | # Create a 2x2 matrix with numeric values 1569 | matrix_key = create_matrix([[1, 2], [3, 4]], "M") 1570 | 1571 | # Create a matrix with symbolic expressions (assuming x, y are defined) 1572 | matrix_key = create_matrix([["x", "y"], ["x*y", "x+y"]]) 1573 | 1574 | Returns: 1575 | A key for the stored matrix. 1576 | """ 1577 | global expression_counter 1578 | 1579 | try: 1580 | # Process each element to handle expressions 1581 | processed_data = [] 1582 | for row in matrix_data: 1583 | processed_row = [] 1584 | for elem in row: 1585 | if isinstance(elem, (int, float)): 1586 | processed_row.append(elem) 1587 | else: 1588 | # Parse the element as an expression using local variables 1589 | parse_dict = {**local_vars, **functions} 1590 | parsed_elem = parse_expr(str(elem), local_dict=parse_dict) 1591 | processed_row.append(parsed_elem) 1592 | processed_data.append(processed_row) 1593 | 1594 | # Create the SymPy matrix 1595 | matrix = Matrix(processed_data) 1596 | 1597 | # Generate a key for the matrix 1598 | if matrix_var_name is None: 1599 | matrix_key = f"matrix_{expression_counter}" 1600 | expression_counter += 1 1601 | else: 1602 | matrix_key = matrix_var_name 1603 | 1604 | # Store the matrix in the expressions dictionary 1605 | expressions[matrix_key] = matrix 1606 | 1607 | return matrix_key 1608 | except Exception as e: 1609 | return f"Error creating matrix: {str(e)}" 1610 | 1611 | 1612 | @mcp.tool() 1613 | def matrix_determinant(matrix_key: str) -> str: 1614 | """Calculates the determinant of a matrix using SymPy's det method. 1615 | 1616 | Args: 1617 | matrix_key: The key of the matrix to calculate the determinant for. 1618 | 1619 | Example: 1620 | # Create a matrix 1621 | matrix_key = create_matrix([[1, 2], [3, 4]]) 1622 | 1623 | # Calculate its determinant 1624 | det_key = matrix_determinant(matrix_key) 1625 | # Results in -2 1626 | 1627 | Returns: 1628 | A key for the determinant expression. 1629 | """ 1630 | global expression_counter 1631 | 1632 | if matrix_key not in expressions: 1633 | return f"Error: Matrix with key '{matrix_key}' not found." 1634 | 1635 | try: 1636 | matrix = expressions[matrix_key] 1637 | 1638 | # Check if the value is actually a Matrix 1639 | if not isinstance(matrix, Matrix): 1640 | return f"Error: '{matrix_key}' is not a matrix." 1641 | 1642 | # Calculate the determinant 1643 | det = matrix.det() 1644 | 1645 | # Store and return the result 1646 | result_key = f"expr_{expression_counter}" 1647 | expressions[result_key] = det 1648 | expression_counter += 1 1649 | 1650 | return result_key 1651 | except Exception as e: 1652 | return f"Error calculating determinant: {str(e)}" 1653 | 1654 | 1655 | @mcp.tool() 1656 | def matrix_inverse(matrix_key: str) -> str: 1657 | """Calculates the inverse of a matrix using SymPy's inv method. 1658 | 1659 | Args: 1660 | matrix_key: The key of the matrix to invert. 1661 | 1662 | Example: 1663 | # Create a matrix 1664 | matrix_key = create_matrix([[1, 2], [3, 4]]) 1665 | 1666 | # Calculate its inverse 1667 | inv_key = matrix_inverse(matrix_key) 1668 | 1669 | Returns: 1670 | A key for the inverted matrix. 1671 | """ 1672 | global expression_counter 1673 | 1674 | if matrix_key not in expressions: 1675 | return f"Error: Matrix with key '{matrix_key}' not found." 1676 | 1677 | try: 1678 | matrix = expressions[matrix_key] 1679 | 1680 | # Check if the value is actually a Matrix 1681 | if not isinstance(matrix, Matrix): 1682 | return f"Error: '{matrix_key}' is not a matrix." 1683 | 1684 | # Calculate the inverse 1685 | inv = matrix.inv() 1686 | 1687 | # Store and return the result 1688 | result_key = f"matrix_{expression_counter}" 1689 | expressions[result_key] = inv 1690 | expression_counter += 1 1691 | 1692 | return result_key 1693 | except Exception as e: 1694 | return f"Error calculating inverse: {str(e)}" 1695 | 1696 | 1697 | @mcp.tool() 1698 | def matrix_eigenvalues(matrix_key: str) -> str: 1699 | """Calculates the eigenvalues of a matrix using SymPy's eigenvals method. 1700 | 1701 | Args: 1702 | matrix_key: The key of the matrix to calculate eigenvalues for. 1703 | 1704 | Example: 1705 | # Create a matrix 1706 | matrix_key = create_matrix([[1, 2], [2, 1]]) 1707 | 1708 | # Calculate its eigenvalues 1709 | evals_key = matrix_eigenvalues(matrix_key) 1710 | 1711 | Returns: 1712 | A key for the eigenvalues expression (usually a dictionary mapping eigenvalues to their multiplicities). 1713 | """ 1714 | global expression_counter 1715 | 1716 | if matrix_key not in expressions: 1717 | return f"Error: Matrix with key '{matrix_key}' not found." 1718 | 1719 | try: 1720 | matrix = expressions[matrix_key] 1721 | 1722 | # Check if the value is actually a Matrix 1723 | if not isinstance(matrix, Matrix): 1724 | return f"Error: '{matrix_key}' is not a matrix." 1725 | 1726 | # Calculate the eigenvalues 1727 | eigenvals = matrix.eigenvals() 1728 | 1729 | # Store and return the result 1730 | result_key = f"expr_{expression_counter}" 1731 | expressions[result_key] = eigenvals 1732 | expression_counter += 1 1733 | 1734 | return result_key 1735 | except Exception as e: 1736 | return f"Error calculating eigenvalues: {str(e)}" 1737 | 1738 | 1739 | @mcp.tool() 1740 | def matrix_eigenvectors(matrix_key: str) -> str: 1741 | """Calculates the eigenvectors of a matrix using SymPy's eigenvects method. 1742 | 1743 | Args: 1744 | matrix_key: The key of the matrix to calculate eigenvectors for. 1745 | 1746 | Example: 1747 | # Create a matrix 1748 | matrix_key = create_matrix([[1, 2], [2, 1]]) 1749 | 1750 | # Calculate its eigenvectors 1751 | evecs_key = matrix_eigenvectors(matrix_key) 1752 | 1753 | Returns: 1754 | A key for the eigenvectors expression (usually a list of tuples (eigenvalue, multiplicity, [eigenvectors])). 1755 | """ 1756 | global expression_counter 1757 | 1758 | if matrix_key not in expressions: 1759 | return f"Error: Matrix with key '{matrix_key}' not found." 1760 | 1761 | try: 1762 | matrix = expressions[matrix_key] 1763 | 1764 | # Check if the value is actually a Matrix 1765 | if not isinstance(matrix, Matrix): 1766 | return f"Error: '{matrix_key}' is not a matrix." 1767 | 1768 | # Calculate the eigenvectors 1769 | eigenvects = matrix.eigenvects() 1770 | 1771 | # Store and return the result 1772 | result_key = f"expr_{expression_counter}" 1773 | expressions[result_key] = eigenvects 1774 | expression_counter += 1 1775 | 1776 | return result_key 1777 | except Exception as e: 1778 | return f"Error calculating eigenvectors: {str(e)}" 1779 | 1780 | 1781 | @mcp.tool() 1782 | def substitute_expression( 1783 | expr_key: str, var_name: str, replacement_expr_key: str 1784 | ) -> str: 1785 | """Substitutes a variable in an expression with another expression using SymPy's subs method. 1786 | 1787 | Args: 1788 | expr_key: The key of the expression to perform substitution on. 1789 | var_name: The name of the variable to substitute. 1790 | replacement_expr_key: The key of the expression to substitute in place of the variable. 1791 | 1792 | Example: 1793 | # Create variables x and y 1794 | intro("x", [], []) 1795 | intro("y", [], []) 1796 | 1797 | # Create expressions 1798 | expr1 = introduce_expression("x**2 + y**2") 1799 | expr2 = introduce_expression("sin(x)") 1800 | 1801 | # Substitute y with sin(x) in x^2 + y^2 1802 | result = substitute_expression(expr1, "y", expr2) 1803 | # Results in x^2 + sin^2(x) 1804 | 1805 | Returns: 1806 | A key for the resulting expression after substitution. 1807 | """ 1808 | global expression_counter 1809 | 1810 | if expr_key not in expressions: 1811 | return f"Error: Expression with key '{expr_key}' not found." 1812 | 1813 | if var_name not in local_vars: 1814 | return f"Error: Variable '{var_name}' not found. Please introduce it first." 1815 | 1816 | if replacement_expr_key not in expressions: 1817 | return f"Error: Replacement expression with key '{replacement_expr_key}' not found." 1818 | 1819 | try: 1820 | expr = expressions[expr_key] 1821 | var = local_vars[var_name] 1822 | replacement = expressions[replacement_expr_key] 1823 | 1824 | # Perform the substitution 1825 | result = expr.subs(var, replacement) 1826 | 1827 | # Store and return the result 1828 | result_key = f"expr_{expression_counter}" 1829 | expressions[result_key] = result 1830 | expression_counter += 1 1831 | 1832 | return result_key 1833 | except Exception as e: 1834 | return f"Error during substitution: {str(e)}" 1835 | 1836 | 1837 | def main(): 1838 | parser = argparse.ArgumentParser(description="MCP server for SymPy") 1839 | parser.add_argument( 1840 | "--mcp-host", 1841 | type=str, 1842 | default="127.0.0.1", 1843 | help="Host to run MCP server on (only used for sse), default: 127.0.0.1", 1844 | ) 1845 | parser.add_argument( 1846 | "--mcp-port", 1847 | type=int, 1848 | help="Port to run MCP server on (only used for sse), default: 8081", 1849 | ) 1850 | parser.add_argument( 1851 | "--transport", 1852 | type=str, 1853 | default="stdio", 1854 | choices=["stdio", "sse"], 1855 | help="Transport protocol for MCP, default: stdio", 1856 | ) 1857 | args = parser.parse_args() 1858 | 1859 | # Call to initialize units 1860 | initialize_units() 1861 | 1862 | if args.transport == "sse": 1863 | try: 1864 | # Set up logging 1865 | log_level = logging.INFO 1866 | logging.basicConfig(level=log_level) 1867 | logging.getLogger().setLevel(log_level) 1868 | 1869 | # Configure MCP settings 1870 | mcp.settings.log_level = "INFO" 1871 | if args.mcp_host: 1872 | mcp.settings.host = args.mcp_host 1873 | else: 1874 | mcp.settings.host = "127.0.0.1" 1875 | 1876 | if args.mcp_port: 1877 | mcp.settings.port = args.mcp_port 1878 | else: 1879 | mcp.settings.port = 8081 1880 | 1881 | logger.info( 1882 | f"Starting MCP server on http://{mcp.settings.host}:{mcp.settings.port}/sse" 1883 | ) 1884 | logger.info(f"Using transport: {args.transport}") 1885 | 1886 | mcp.run(transport="sse") 1887 | except KeyboardInterrupt: 1888 | logger.info("Server stopped by user") 1889 | else: 1890 | print("Starting MCP server with stdio transport") 1891 | mcp.run() 1892 | 1893 | 1894 | if __name__ == "__main__": 1895 | main() 1896 | ```